
Workbook
on

C++ Programming
Version 1.0

Author
Richard Conn

University of Cincinnati
Department of Electrical and Computer Engineering

February, 1992

Workbook on C++ Programming

Table of Contents

µ1. Types and Functions 4
1.1. Modeling the World with Types 4
1.2. Types = Structs + Functions 4
1.3. Data Protection 6
1.4. Classes 6
1.5. Function Overloading7
1.6. Default Function Arguments 7
2. More C++ Basics 8
2.1. Type-Safe Linkage 8
2.2. Constructors and Destructors 8
2.3. Const 10
2.4. Inline 10
2.5. Objects May Be Defined Anywhere 11
2.6. References 11
2.7. this 13
3. Even More C++ Basics 14
3.1. Static Class Members 14
3.2. Dynamic Object Creation 15
3.3. Container Classes 16
4. Classes and Inheritance 17
4.1. Designing Header Files 17
4.2. Inheritance 18
4.3. More Inheritance 19
4.4. Base Class Constructors 20
4.5. Base Class Destructors 21
5. Families of Types and More Features of C++ 23
5.1. Composition 23
5.2. Creating Families of Types 24
5.3. Virtual Functions 24
5.4. Operator Overloading25
6. Closing 26

Page 2

Workbook on C++ Programming

Solutions 27
Solution 1.1 27
Solution 1.2 28
Solution 1.3 29
Solution 1.4 30
Solution 1.5 31
Solution 1.6 32
Solution 2.1 33
Solution 2.2 36
Solution 2.3 37
Solution 2.4 38
Solution 2.5 39
Solution 2.6 40
Solution 2.7 41
Solution 3.1 42
Solution 3.2 43
Solution 3.3 45
Solution 4.1 47
Solution 4.2 49
Solution 4.3 50
Solution 4.4 52
Solution 4.5 54
Solution 5.1 56
Solution 5.2 58
Solution 5.3 60
Solution 5.4 62

Page 3

Workbook on C++ Programming

The purpose of this workbook is to teach you about C++ in an overview fashion. This workbook follows
the video course entitled The World of C++ by Borland.

1. Types and Functions

1.1. Modeling the World with Types
Object-oriented programming includes the following basic concepts:

3 We organize our world using types. We use the concept of type to organize our world in a
meaningful way. Virtually every object in our world is classified as some "kind of" or "type of"
object.

3 A type has characteristics and behaviors. Characteristics are represented by data (and the state
of that data) and behaviors are represented by functions.

3 Object-oriented programming (sometimes abbreviated as OOP) allows real-world types to be
represented as abstract data types in the computer. Our computer programs become models of the
real world, where the real world is realized as a number of interacting objects and so is our program.

3 Inheritance establishes a relationship between types. It shows which characteristics and
behaviors are common and which are different. It also lets you reuse an existing type by adding code
on top of the existing code, rather than modifying (or even accessing) the original source code.

3 A type hierarchy establishes a common interface in the base type, and different implementations
in the derived types. This is called polymorphism. Polymorphism allows you to create clear
programs which can be easily and inexpensively extended.

3 Dynamic object creation lets you decide the quantity, type, and lifetime of variables at run-time
rather than when you are writing the program.

Problem 1.1: Draw a hierarchy diagram to represent types of electronic equipment. Put electronic
equipment at the root of the hierarchy, with business and entertainment branching from it. Business
includes such things as cash registers, copiers, and so on; entertainment includes such things as
television, video games, and music systems. How do you classify things that could belong to both
groups, like telephones and computers?

1.2. Types = Structs + Functions
C++ allows you to create new types by using structs and functions. Some notes:

3 C++ has a comment syntax of its own, in addition to the regular C-style comment syntax. The
new comment specifier, //, starts a comment that continues to the end of the line.

3 A type is a struct with functions. In C++, the concept of a struct is extended so it can contain
functions as well as data. An example from the video:

Page 4

Workbook on C++ Programming

struct elevator {

 int floor_selected;
 int floor_number;
 void initialize(); // function declaration in the scope
 // of the struct
 void select_floor (int floor);
 void go();
};

3 When member functions are defined outside the body of the struct, their associated struct is
specified using the scope resolution operator. This is a double colon (::) placed between the type
name and the member function name, like this:

void typename::member_name() { /* function body */ };

In the elevator structure, the initialize function would look like:

void elevator::initialize() {

 floor_selected = 0;
 floor_number = 0;
}

You use the scope resolution operator any time when the compiler would not normally choose the
desired name. For example, if you have a global variable X that is hidden by a local variable X, you
can access the global variable using ::X. For example,

int my_var; // global variable

void main (void) {
 int my_var; // local variable
 my_var = 1; // this sets the local variable above
 ::my_var = 2; // this sets the global variable
}

3 A member function can access any other member in the same struct, including both data and
function members. In the initialize() function, it accessed the floor_selected and floor_number
variables.

3 The C++ compiler automatically generates the equivalent of a typedef for a struct name. The
name becomes the equivalent of a new keyword. For example, in the elevator example:

struct elevator my_elevator; // create an elevator object

elevator his_elevator; // "struct" not needed

3 Given the creation of an object via a struct, you invoke a member function by following the
object name with a dot and the name of the function. For example, to invoke the initialize() function
on the two elevator objects above:

my_elevator.initialize();

Page 5

Workbook on C++ Programming

his_elevator.initialize();

3 You can use existing C code in your programs. All the ANSI C and Borland C libraries are
automatically available.

Problem 1.2: Write a C++ program which creates a complex object struct. The struct should contain
the member data real_part and imag_part as type double. The struct should also contain the member
functions set(), add_one_to(), and print() which sets the value of a complex number, adds 1 to a
complex number, and prints a complex number. Define the required member functions by placing
their code in the body of the struct (you don't have to use the scope resolution operator). In your
mainline, create a complex number, set it to 20i - 30j, print it, add one to it, and print it again.

1.3. Data Protection
Protection of data from accidental modification enforces the proper use of a data type and easily isolates
errors. Access is controlled with the three access specifiers:

3 private:, which prevents access from the outside world -- only member functions (and friend
functions) may change private data or access private member functions

3 protected:, which is like private except inherited classes also have access (inheritance is
covered later)

3 public:, which permits everyone to access the members

For example,

struct protection_example {
 int public_can_change_this; // public by default
private:
 float public_can_not_change_this;
protected:
 float public_can_not_change_this_also; // unless you
 // inherit
};

Special access to private and protected members could be granted to non-member functions -- either
ordinary functions, member functions of structs, or entire structs -- by using the friend keyword when
declaring the function inside a struct.

Problem 1.3: Write a C++ program which creates a struct named P containing an integer. Define two
member functions: set() which sets the value of this integer and print() which prints its value. Also
define a friend function called printit(). In your mainline, create an object of type P and set its value to
12. Print it using the member function. Change its value to 14. Print it using the friend function. To get
you started, the declaration of struct P should look like this:

struct P {
private:
 int value;
public:
 void set (int);
 void print (void);
 friend void printit (P);

Page 6

Workbook on C++ Programming

};

1.4. Classes
The C++ keyword class is like struct in functionality except that class defaults to private members while
struct defaults to public members. class is the preferred keyword for defining new types, particularly
since it adds extended functionality over struct (which we will discuss later).

The video showed that class, struct, union, and enum are treated similarly by the compiler in that their
tag names create reserved words within their scope (similar to doing a typedef in C), and the forms of the
declarations and definitions are very similar.

Problem 1.4: Write a C++ program which creates a class called counter. Keep the integer which keeps
the count for the counter private. Provide public member functions which set, increment, and display the
count. Create two counter objects, set them to different values, display them, increment them, and
display them again.

1.5. Function Overloading
Function overloading allows you to create more than one function with the same name as long as all the
functions have distinct argument lists. Function overloading has many advantages, such as preventing
name clashes when you are using multiple libraries.

Some examples of overloaded functions are:

void f(int);
void f(int, char);
float f(double);

Overloading is resolved by the argument lists only. The following pair of declarations is invalid and not
an example of proper overloading since only the types returned differ:

void f(int);
double f(int);

Problem 1.5: Write a C++ program which contains two functions called print(). One function prints an
int and the other a double. Output an int and a double using these functions from the mainline.

1.6. Default Function Arguments
Default arguments are used with a function when you want some of the arguments to be automatically
inserted by the compiler instead of writing them all out yourself every time you call the function. Here is
an example of a function with default arguments and several calls to it:

void g(float f, float f2 = 1.1, char x = 'i');

g(12.2); // f=12.2, f2=1.1, x='i'
g(20.0, 4.0); // f=20.0, f2=4.0, x='i'
g(100.0, 200.0, 'a'); // f=100.0, f2=200.0, x='a'

Page 7

Workbook on C++ Programming

You can declare a function more than once, but you may only give default arguments once. Only trailing
arguments may be given default values, and once you start giving default values, all the rest of the
arguments in the list must have defaults.

Problem 1.6: Write a C++ program which contains a function called print() with a default argument of 1.
Call print with no arguments and with an argument of 20. As a function, print() is to display the value of
its argument to the console.

Page 8

Workbook on C++ Programming

2. More C++ Basics

2.1. Type-Safe Linkage
In C, you can call functions without declaring them, which means that the C compiler may make
incorrect assumptions about that function, such as the type of its return value or the number and types of
its parameters. C++ includes several innovations to help reduce errors:

3 C++ requires full function prototyping. C++ forces you to declare all functions and to use full
prototypes in those declarations. Even if you declare functions in C, you may declare them
incorrectly without generating any error messages. C++ checks every function call during
compilation to determine if the number and types of the arguments to the function and the type
returned from the function match its prototype.

3 C++ has type-safe linkage. In C++, type-safe linkage occurs because all function names are
mangled in the object files. This mangling of function names embeds information about the
arguments into the function names.

3 C++ supports an alternate linkage specification to provide compatibility with C libraries .
In some situations, such as linking to libraries created with an ANSI C compiler, you may not want
C++ to mangle function names. C++ lets you tell it not to mangle a function name through the use
of an alternate linkage specification, which looks like this:

extern "C" { float round(float); }

Problem 2.1: Create two C++ files, one with a function definition (code) and one that declares
(contains a function prototype) and uses the function. In the second file (the one with the prototype),
make the declaration incorrect by putting the wrong argument type in the prototype. Compile and
link the files, noting that the linker catches the error since the files are compiled separately. Create a
third file which declares and uses the function, but this time make the declaration incorrect by
putting the wrong return type in the prototype. Compile and link the files. Note that the error is not
caught -- why do you think the return types are not encoded in function names?

2.2. Constructors and Destructors
When you define a class in C++, a special kind of member function which is automatically called
whenever an instance of the class (e.g., an object) is created. This member function is called a
constructor, and it is designated by having the same name as the class itself. Here is an example of a
class with a constructor:

class complex {
 float real_part;
 float imag_part;
public:
 complex(); // object is initialized to zero
 void set (float rp, float ip);
 void print(void);
};

As mentioned above, constructor calls occur automatically at the point the variable is defined. The user
cannot access the variable before the constructor has been called. Although constructors are optional,
you will often want to use one. The following shows an example of the declaration of a complex object:

Page 9

Workbook on C++ Programming

Page 10

Workbook on C++ Programming

complex value; // space is allocated and value is set to
 // 0,0

You can create as many overloaded constructors as you want to perform as many different kinds of
initialization as you want. For example, extending the definition of the complex class above:

class complex {
 float real_part;
 float imag_part;
public:
 complex(); // object is initialized to zero
 complex(float rp); // init only real part, imag is 0
 complex(float rp, float ip); // init both parts
 void set (float rp, float ip);
 void print(void);
};

With this class definition, there are three ways to create complex objects:

complex val1; // val1 = 0.0i + 0.0j
complex val2(2.0); // val2 = 2.0i + 0.0j
complex val3(4.4, 5.5); // val3 = 4.4i + 5.5j

You can also use default arguments with constructors, so long as you don't generate ambiguities. The
requirement to not generate ambiguities is true for all functions that use overloading and default
arguments. Changing the complex class again:

class complex {
 float real_part;
 float imag_part;
public:
 complex(float rp = 0.0, float ip = 0.0); // init 3 ways
 void set (float rp, float ip);
 void print(void);
};

This single constructor function supports all three types of object declaration (shown with the
declarations of val1, val2, and val3 above).

C++ allows you to ensure proper cleanup with destructor functions. A destructor is a member function
with the same name as the class preceded by a tilde (such as ~complex). Here is our complex class with
a destructor:

class complex {
 float real_part;
 float imag_part;
public:
 complex(float rp = 0.0, float ip = 0.0); // init 3 ways
 ~complex(); // destructor
 void set (float rp, float ip);
 void print(void);
};

Page 11

Workbook on C++ Programming

Destructor calls are also invoked automatically, and they occur when a variable goes out of scope.
Destructors are optional, but you often need one. You can only create one destructor function for each
class, and it cannot have any arguments.

Problem 2.2: Write a C++ program which contains a class that has only a constructor and a destructor as
its member functions. Determine the order of constructor and destructor calls for variables by putting
printf() statements inside the constructor and destructor and creating several variables inside main(). To
generate a unique identifier for each variable, use the keyword this inside the printf() statement. this is
the address of the current variable, and this is a pointer. You can print pointers inside printf() by using
%p as a format specifier.

2.3. Const
You can use const in front of any variable definition to indicate that the value cannot be changed and that
the C++ compiler should try not to allocate storage for it, keeping the information about it in the symbol
table only. Examples of constants in C++ are:

const a = 1; // int is assumed
const float pi = 3.14159;
const char exit_command = 'x';

If you are familiar with ANSI C, the behavior of const in C++ is distinctly different from the behavior of
const in ANSI C. In ANSI C, const defaults to external linkage (it is global), and const always allocates
storage for the value, so you cannot use it in constant expressions like array definitions. In C++, const
defaults to internal linkage (as if you had said static const). Also, the C++ compiler stores the value of
consts in the symbol table, so they can be used in constant expressions. Most C++ compilers, however,
must allocate storage for user-defined types, so you should only expect to be able to use built-in types in
constant expressions.

Because of these differences, you cannot use const in a header file or to otherwise replace the use of
#define in ANSI C, while in C++, use in header files and replacing the use of #define is exactly what
const is for.

Problem 2.3: Write a C++ program which creates an array of integers, where the size of the array is
dictated by a const variable. Print out the size of the array (using the sizeof operator) and the value of
the const variable.

2.4. Inline
In C++, the preprocessor is seen as a trouble spot not only because it can create expressions with unusual
behavior and side effects, but also because it has no concept of type. Type is a fundamental idea in C++,
and type checking is a very important way to discover programmer errors during compile time. The
preprocessor's ignorance about types means that it can hide errors, making them difficult to find.

C++ provides an improvement to preprocessor macros with the inline keyword. Inline functions behave
exactly like conventional functions, but they do not generate code until the point at which they are called,
at which time the code is placed in with the code which calls the function rather than placing a subroutine
call in the calling code. Functions that are defined within a class declaration are automatically inline,
but global functions must use the inline keyword.

The function prototype and function body of an inline function are stored in the C++ compiler's symbol
table. When you call an inline function, the C++ compiler checks to see that the arguments and return

Page 12

Workbook on C++ Programming

values are correct, and then it substitutes the function body directly into the code.

Problem 2.4: Write a C++ program which contains an inline function that takes a single integer
argument, adds 5 to it, and prints the result using printf(). Have the mainline call this inline function 10
times with different arguments. What do you think the object code looks like at each one of these calls?

2.5. Objects May Be Defined Anywhere
In a C++ program, unlike a C program, objects may be defined anywhere. There are cases where some
variables cannot be initialized until some code has executed, so C++ allows you to define variables at any
point in a scope. These variables exist after their definition to the end of the scope. For example:

complex a; // create complex number a
a.print(); // print it
complex b; // create complex number b
b.print(); // print it

C++ supports a very sophisticated mechanism for the initialization of aggregates. This means that you
can ensure that aggregates are initialized at their point of definition, allowing you to avoid the tedious
and error-prone code that may otherwise be required to initialize the aggregate manually.

Variables of built-in types are also regions of storage, so we sometimes call them objects. Conversely,
we sometimes call class objects by the word variables. Even function definitions require storage, but
these are rarely called objects except where the linker is concerned. In a pure object-oriented language
like Smalltalk, everything is an object, so this distinction is not required. C++ is called a hybrid language
since it is a hybrid of C and other languages, most notably Simula-67.

Some notes about C++ and its use of storage for objects:

3 Storage is reserved at the beginning of a scope. Like C, the C++ compiler allocates storage
on the stack when a scope is entered. To do this, the C++ compiler must scan forward and determine
all the variables which are defined in that scope.

3 Initialization of objects occurs at the point of definition. Although the space is reserved upon
entering the scope, initialization does not occur until the point at which the object is defined.

3 An object is unavailable until it is defined. The object is not available until after the point of
definition. In a class with a constructor and destructor, if you leave a scope before the constructor is
called, then the destructor is not called. The compiler will not allow a goto that skips object
initialization.

Problem 2.5: To prove that C does not let you create variables anywhere in a scope and that C++ does,
create a small C program that has variable definitions after a puts() statement. Compile it first with C++
and then with C.

2.6. References
C++ has the traditional pointer facility of C, and pointers act just the way you would expect, even when
calling member functions. C++ also has a new feature called a reference, which is like a pointer except
the compiler automatically takes the address and dereferences it for you. A reference looks just like an
object except at the point of creation. References are almost exclusively used as function arguments and
return values. For example:

Page 13

Workbook on C++ Programming

// Exchange function in C++
void exchange (int &left, int &right)
{
 int temp;
 temp = left;
 left = right;
 right = temp;
}

// Code which calls this exchange () function
int a = 5, b = 4;
exchange (a, b); // pointers to a and b are passed

The above example is equivalent to its C counterpart:

/* Exchange function in C */
void exchange (int *left, int *right)
{
 int temp;
 temp = *left;
 *left = *right;
 *right = temp;
}

/* Code which calls this exchange () function */
int a = 5, b = 4;
exchange (&a, &b); /* pointers must be created by user */

Problem 2.6: Write a C++ program which creates two objects which are of the type of this book struct:

struct book {
 char title[40];
 char author[20];
};

Initialize these objects in an aggregate using dummy data of your choice. Include in the program a
function which receives a book object by reference and prints out the values of the fields. Call this
function twice, one time with each of the books you created.

Page 14

Workbook on C++ Programming

2.7. this
The keyword this is really important in C++. It provides an object which is created as an instance of a
class with a mechanism to determine its own address. this is a hidden pointer which is created with each
instance of a class, generating a little additional overhead in the process.

Problem 2.7: Write a C++ program which contains a class based on the following class declaration:

class person {
 char *name;
public:
 person (char *my_name); // create a person with a given
 // name
 void print_me(void); // print the name of a person and
 // his address using this
};

Implement this class. Create five instances of this class with different names. Have each object invoke
its print_me() member function.

Page 15

Workbook on C++ Programming

3. Even More C++ Basics

3.1. Static Class Members
The class members, both functions and data, discussed so far work with each instance of the class. Each
time a new object is created, a new copy of the member data is produced.

A special kind of class member, declared with the keyword static, is a class member which works with
the class as a whole, not with the individual members of a class. A static member data element, for
instance, is created only once for the entire class, regardless of how many instances of that class are
created. Static class members can be accessed by all members of a class, and the name of a static
member data element is hidden within the scope of the class. Here is an example of a class with a static
member data and a static member function:

class demo_static {
 static int i; // only one of these is created
 int j; // one is created local to each object
public:
 static void f();
};

demo_static x, y, z; // one int i is created and 3 int j's

Defining and initializing static member data is performed by a global definition that reserves storage and
initializes the data. The int i static member data element above is initialized as follows:

int demo_static::i = 0;

The member function f() can access the int i like any other member data element.

Static member functions also work with the entire class rather than a particular object. The address of the
object, referred to with the keyword this, is not secretly passed into a static member function. Thus, a
static member function can only access static data members or call other static member functions unless
it gains access to the public members of an object by having the object passed as an argument to it.

A static member function is called either with an object or by specifying the class name and the scope
resolution operator. Two ways to call the static member function f() in the example above are:

object.f(); // access f() through an object
demo_static::f(); // access f() without an object

Problem 3.1: Write a C++ program which defines the following class:

class counter {
 static int object_count;
public:
 counter();
 static int get_count(void);
};

Each time an object is created, the constructor is to increment the object_count. get_count() returns the

Page 16

Workbook on C++ Programming

current value of the object_count. Your program is to create 5 instances of this class, printing out the
current value of object_count each time a new object is created.

3.2. Dynamic Object Creation
All the examples shown so far have used static or automatic objects with their memory allocated by the
C++ compiler at compile-time. To write a program which uses only static or automatic objects, you must
know the quantity, type, and lifetime of all the objects you will ever need in advance. This is a severe
limitation when solving more general types of problems when the number and details of the objects in the
system are not known until run-time.

Dynamic object creation in C++ lets you choose, at run-time, the type and the lifetime of an object. You
can also decide at run-time how many objects you will need. Arrays of objects can even be created and
destroyed as needed.

In conventional C, the C standard library functions malloc() and free() were always used to dynamically
create objects and then later destroy them. These C standard library functions are also available in C++
if you wish to use them, but C++ has two new operators which eliminate the need for malloc() and free()
while adding automatic invocation of constructors and destructors. The C++ operator new allocates
memory and calls the constructor associated with the object to guarantee that the object is properly
initialized. The C++ operator delete calls the destructor associated with the object and then releases the
memory associated with the object. These operators let you create objects at run-time as easily and
safely as you do at compile-time.

This example uses new and delete to create and destroy an instance of the class string:

string *s = new string ("hello");
delete s;

Problem 3.2: Write a C++ program which defines a string class declared as follows:

const max_string_length = 100;
class string {
 char data[max_string_length];
 static int number_of_strings;
public:
 string(char *); // place arg string into buffer and
 // increment number_of_strings
 static int count(void); // return number_of_strings
 void print(void); // print current string
};

Create 3 string objects, initializing them to different values. Print out the count of the strings. Create 2
more string objects, also initializing them to different values. Print out the count of the strings. Have
each string object print out its value.

Page 17

Workbook on C++ Programming

3.3. Container Classes
Container classes, which are sometimes called collections, are classes whose member data elements
include instances of other classes. For example, a car class may contain member data elements which are
wheels, where a wheel is defined as a class in its own right.

Problem 3.3: Write a C++ program which defines two classes declared as follows:

class note {
 char text[40];
public:
 note (char * = " "); // create a note
 void print (void); // print the note
};

class note_book {
 note *narray[10];
 int number_of_notes;
public:
 note_book(); // init number_of_notes
 void add (note *); // add a note to the note_book
 void print(void); // print out the note_book
};

Have your program create 7 note objects (containing different values) and add them to the note_book.
Print out the note_book.

Page 18

Workbook on C++ Programming

4. Classes and Inheritance

4.1. Designing Header Files
In C++, it is often important to organize your code effectively for large projects, libraries, and situations
where you are using classes and separate compilation. Correctly organized code greatly facilitates reuse.
The organization of the code is most apparent in its header files.

A header file includes the class declarations (but not the definitions unless you absolutely have to),
function prototypes, const values, and anything else that is a part of the public interface to a class or
library. Again, header files contain only declarations, not definitions. If an entity is realized as code or
data which occupies space in the memory of the running process, it does not belong in the header file.
An example of a C++ header file follows:

// Header file for a stack class

// This preface ensures that the header file will never
// be included twice
#ifndef STACK_H_
#define STACK_H_

const stack_size = 100;

class stack {
 int stack[stack_size];
 int top_of_stack; // index of the next available element
 // in the stack array
public:
 stack(); // init top_of_stack to zero
 void push (int); // place an element on the stack
 int pop (void); // extract an element from the stack
 int is_full (void); // return 1 if stack is full,
 //0 otherwise
 int is_empty (void); // return 1 if stack is empty,
 //0 otherwise
};

#endif // STACK_H_

The declarations for classes and functions that belong together should be placed in a single location: the
header file. Use this header where ever the classes and functions are defined or used to ensure
consistency and reduce bugs.

Since C++ does not allow you to re-declare classes, you must insulate header files so the C++ compiler
sees their contents only once when compiling a file. The situation often comes up where one header file
needs another, so it #includes it. If you already have a #include directive for this second header file, C+
+ would see the same header file twice, confusing matters greatly. The example above shows how a
header file may be insulated to eliminate this problem. The general rule is to include the following
sequence of preprocessor statements around the body of the header file:

#ifndef FILE_H_
#define FILE_H_
// code for the body

Page 19

Workbook on C++ Programming

#endif // FILE_H_

Any defined symbol may be used, but it is common to use a form like FILE_H_ so that it is clear that a
header file is involved. In effect, this practice says "if this header file has been included before
(FILE_H_ has already been defined), then ignore the rest of this file." Key to making this work is
coming up with an identifier whose name is unique that can be used by the preprocessor so it can
determine if the header file was included before. It is easiest to use a modification of the header file
name (the header file was named in this case, so the preprocessor symbol FILE_H_ was chosen).

Problem 4.1: Write a header file for a C++ class of complex numbers. Include as many pertinent
operations you can think of. Look at the solution in the back, and you may be surprised because the idea
of operator overloading is introduced here. We will discuss operator overloading later in this workbook.

4.2. Inheritance
Inheritance in C++ lets you easily create new classes from existing ones. This feature of the language
has several benefits:

3 New classes can be created quickly without introducing bugs to code which was previously
debugged.

3 Code can be reused and augmented without having to rewrite it.

3 When you extend or modify a system, you don't end up with a lot of copies of similar code to
maintain.

3 You don't need access to the source code of the member function definitions, so you can use
another library even if it's just a header file and compiled code. This goes a long way to creating a
software business area of designing and selling reusable components libraries in C++.

3 The design of programs is easier because you can further partition a program into logical pieces.

3 This technique helps to isolate bugs.

The syntax for inheritance is simple. In the class declaration, place a colon after the class name. Put the
name of the class you are inheriting after the colon which follows the name of the class you are declaring.
The name of the class you are inheriting is now followed by the opening brace of the body of the class
declaration. Inheriting a class called base looks like this:

class derived : base {
 // declaration of class derived goes here
};

Problem 4.2: Write a C++ program which contains the following class definition for a number class and
the definition of a derived class called pnumber which inherits the number class definition:

class number {
protected:
 int value;
public:
 number(int new_value = 0);
 void set (int new_value = 0); // change existing number
};

Page 20

Workbook on C++ Programming

Implement the number class definition by filling in the member functions. Create the derived pnumber
class declaration, adding a new member function called print() which displays the value of the pnumber
object. Note that this problem introduces the concept of a protected class member, where a protected
class member is private from the point of view of the outside world but public from the point of view of
a derived class. Complete your program by creating three pnumber objects, setting them to different
values upon creation. Print these values, then change them and print them again.

4.3. More Inheritance
The following header file contains the declaration for a class whose mission is to remember its creation
date and time:

// TSTAMP.H: type of signal which remembers its creation
// time
#ifndef TSTAMP_H_
#define TSTAMP_H_

// Provide access to time(), ctime(), and printf()
#include <time.h>
#include <stdio.h>

class time_stamp {
 time_t stamp
public:
 time_stamp(); // set time stamp
 void showtime(void); // display time stamp
};

#endif // TSTAMP.H

This header file may be implemented with the following code definition:

// TSTAMP.CPP: implementation of TSTAMP
#include "tstamp.h"

time_stamp::time_stamp() {
 time (&stamp); // get time from system
}

void time_stamp::showtime(void) {
 printf("Time Stamp: %s\n", ctime (&stamp));
}

Note that for any class derived from time_stamp, if you want to add functions or data to time_stamp or
modify the existing member functions, these changes are immediately propagated through to all the
derived classes. This means that maintaining code becomes much easier because it isn't duplicated when
you make changes -- there's a single definition for a function.

Just like members of a class may be public, private, or (a hybrid) protected, base classes may be public
or private (they default to public). A private base class is one in which all its members are hidden
within the derived class -- its members are private to the derived class. A public base class is one in
which all of its public members are also public to the derived class -- its public members are available to
users of the derived class. For example,

Page 21

Workbook on C++ Programming

class message : private time_stamp {
 char *msg;
public:
 message(char *); // init the msg ptr
 void print(void); // print the message with date and time
};

In the case of class message, the only member functions available to the outside world are the constructor
and print(). However, the situation is different for this case:

class message2 : public time_stamp { // keyword public
 // may be omitted
 char *msg;
public:
 message(char *); // init the msg ptr
 void print(void); // print the message with date and time
};

In the case of class message2, the member functions available to the outside world are the constructor,
print(), and showtime(), where showtime() is in the base class time_stamp.

You have just observed one disadvantage to inheritance in C++:

In order to determine all of the member functions available to a derived class, the
user must examine each of the base classes. If the base classes are themselves
derived, the user must also examine each of the sub-base classes associated with the
base classes.

Breaking your problem into classes has the effect of partitioning the problem. This establishes principal
dividing lines that are enforced by the C++ compiler, thereby establishing an organization that prevents
the kind of entropy that causes spaghetti code. Inheritance partitions your solution even further, so you
can try out new ideas without damaging code that works. If a bug appears, it is immediately isolated to
the additional code you added during the inheritance process.

Problem 4.3: Write a C++ program which implements time_stamp, message, and message2. You may
place all the code in one file to simplify the problem. Create an instance of message and an instance of
message2. Exercise all the member functions of each object.

4.4. Base Class Constructors
Inheritance as described so far is a wonderful idea, but one thing is missing -- the invocation of the
constructors of the base classes, particularly when these constructors require arguments. The
constructors of the base classes are explicitly called (this is the only time you may explicitly call a
constructor in C++) in the constructor initializer list for the derived class. The constructor initializer list
is placed after the constructor argument list of the derived class's constructor definition and before the
opening brace of the constructor body. For example:

class base {
public:
 base(char *); // requires a string
};

Page 22

Workbook on C++ Programming

class derived : base {
public:
 derived (char *); // requires a string to be passed to
 // base
};

The class derived is derived from class base. The constructor for class derived would look like this:

Page 23

Workbook on C++ Programming

derived::derived(char *data) : base (data) {
 // details of derived constructor
}

So, the constructor initializer list is used to explicitly pass arguments to the base class constructors. If
the base class constructors do not require arguments, they need not be specified in the constructor
initializer list.

When using inheritance, all the constructors in all the base classes are called, either explicitly using the
constructor initializer list or implicitly by the C++ compiler (using the default constructors).
Constructors are called starting at the base class and working their way up to the derived class.

The way C++ calls base class constructors ensures that all derived class constructors can depend on the
base class being properly initialized.

Problem 4.4: Create a new C++ program from the one you just did on the time_stamp base class. Create
another derived class called priority_message, which requires a second string that indicates the urgency
of the message (where urgency strings may be something like "routine", "flash", and "dire emergency").
The priority_message class should inherit the message2 class, replacing print() to include the urgency
string. Add to the constructors of all these classes a printf() call that outputs a note saying that the
constructor was called. Also add destructors to all these classes which contain printf() calls that output
notes saying that the destructors are called. Create two priority_message objects and note the order of
the constructor and destructor calls. Output the priority_message values through print() member
functions declared and defined in the priority_message class.

4.5. Base Class Destructors
Only one destructor may be defined for a class, and destructors (which cannot take any arguments) are
automatically called by the C++ compiler. The automatic calling of destructors means that you don't
have to specify which destructor to call. For derived classes, there is no destructor equivalent to the
constructor initializer list.

All destructors are called for an instance of a derived class -- not just the destructor declared in the
derived class itself. As with constructors, this is done to ensure that all parts of an object are properly
cleaned up.

Destructors are called from the top down, which is the opposite order from which the corresponding
constructors were called. This way, any activities the destructor performs can be sure that base class
function calls operate properly.

Page 24

Workbook on C++ Programming

Problem 4.5: Write a C++ program which contains a chain of derived classes like the following:

class base {
 char *msg;
public:
 base(char *); // prints message only
 ~base(); // prints an exit message
 void print(void); // print msg
};

class derived1 : base {
public:
 derived1(char *); // prints a different message
 ~derived1(); // prints an exit message
};

class derived2 : derived1 {
public:
 derived2(char *); // prints a 3rd message
 ~derived2(); // prints an exit message
};

Write implementations for all the member functions. Also type the following main() function into your
code. Execute the program and note what happens.

void main(void)
{
 derived2 x("X"); // in scope of main()
 { // establishing a new scope in scope of main()
 derived2 y("Y");
 }
 derived2 z("Z"); // also in scope of main()
}

When were the destructors for x, y, and z called? When were the constructors for x, y, and z called?
When was space allocated for the objects x, y, and z?

Page 25

Workbook on C++ Programming

5. Families of Types and More Features of C++

5.1. Composition
While inheritance is great in C++, you don't always want to use inheritance (which is a form of
derivation) when making new classes out of old ones. Inheritance is sometimes called an is-a
relationship between classes; for example, a car is a type of vehicle. Another kind of relationship is a
has-a relationship; for example, a car has an engine and four wheels. Inheritance does not make sense in
describing a has-a relationship, but composition, wherein a class is built that contains instances of other
classes, does make sense. An example of composition:

class wheel {
 int wheel_diameter;
public:
 wheel(int diameter); // set wheel diameter
 void print(void);
};

class vehicle {
 int horse_power;
 wheel lfront, rfront, lrear, rrear;
public:
 vehicle (int hp,
 int diameter_of_each_wheel);
 void print(void);
};

wheel::wheel(int diameter) { wheel_diameter = diameter; }

vehicle::vehicle (int hp,
 int diameter_of_each_wheel) :
 horse_power(hp), // init like an assignment
 lfront (diameter_of_each_wheel), // init each object
 rfront (diameter_of_each_wheel),
 lrear (diameter_of_each_wheel),
 rrear (diameter_of_each_wheel)
{
 // nothing else to be done
}

Using composition is just like using built-in types: you create instances of a class inside another class.
The only trick is that if the objects have constructors which take arguments, those objects must be
explicitly initialized in the constructor initializer list. See the example above and its long constructor
initializer list.

Built-in types can be initialized in the constructor initializer list, and consts must be initialized this way.
Again, see the example above. Note that wheel_count(number_of_wheels) in the constructor initializer
list is equivalent to wheel_count = number_of_wheels; in some line of code (assuming wheel_count
was not a const).

Problem 5.1: Write a C++ program by typing in the above body of code. Add print() member functions
to both the wheel and vehicle classes to print out the values of their internal data. Create a vehicle object
and invoke the member print() function on it.

Page 26

Workbook on C++ Programming

Page 27

Workbook on C++ Programming

5.2. Creating Families of Types
Inheritance is used to create families of types:

3 The base class provides the common interface for the family. The base class is the abstraction
of the characteristics and behaviors that are common to all types in the family.

3 The derived classes offer implementations which differ from the base class in significant ways.
From the base class, you derive new types to express the differences between all the objects in your
type family.

3 A feature of C++ called late binding provides the proper manipulation of a common interface.
To use these types effectively, you must be able to send a message to an object and let the object
figure out what function to call at run-time. Determining a function call at run-time is called late
binding, run-time binding, or dynamic binding. Determining a function call at compile-time is called
early-binding, compile-time binding, or static binding.

Problem 5.2: Write a C++ program which demonstrates inheritance and late binding by creating a base
class called pet and the derived classes of dog and cat. Define a speak() member function for each class.
The speak() function for the base pet class outputs "silence". The speak() function for a dog outputs
"woof" and the speak() function for a cat outputs "meow". The base class keeps internal data on the type
of pet it represents using an enum and an internal variable of that enum type. A member function of the
base pet class called type() returns the value of the type of the pet.

Write a talk() function which is not a member of a class. The talk() function is to accept the address of a
pet as an argument (use references), and cause the correct speak() function to be called by determining
the type() of the pet and invoking the associated speak() function.

Create a dog object, a cat object, and a pet object. Call the talk() function on each of them.

5.3. Virtual Functions
C++ implements late binding with the virtual keyword, eliminating the need of the somewhat awkward
function selection mechanism illustrated in the solution to the last problem. Some details of how late
binding works through virtual functions are:

3 A special pointer, called VPTR (pronounced vee pointer), is secretly added to a class structure
when the class contains virtual functions. The VPTR is assigned by the constructor to the address of
the VTABLE (pronounced vee table), and the VTABLE contains the addresses of all related virtual
functions.

3 A virtual function call consists of code that indexes into the VTABLE through the VPTR. This
way, the function call is resolved at run-time, based on the type of the object.

A virtual function is declared like any other function except that the virtual keyword prefixes the
function declaration.

Page 28

Workbook on C++ Programming

Problem 5.3: Rewrite the C++ program in problem 5.2 to employ virtual functions for speak(). Modify
talk to use these virtual functions. Make the speak() function for the pet class into a pure virtual
function, which is defined as follows:

virtual void speak() = 0;

Note that instances of classes that contain pure virtual functions cannot be created in C++, which is fine
since it makes no sense to create such an object. In the real world, there is no generic pet object.
Instead, there are dog and cat objects.

5.4. Operator Overloading
In C++, you can change the meaning of almost any operator when that operator is used with a variable of
a particular type. Notice that the meaning of the operator does not change everywhere -- just when the
C++ compiler matches the proper use of the operator with the objects to which it applies. For instance, if
you have two variables of the class point called a and b, the following expressions

a + b;

will only work if the class point has an overloaded operator+() function. When the C++ compiler sees a
point followed by a + and another point, it will call the function operator+() to operate on the first point
with the second point as an argument. C++ is context-sensitive in its selection of the appropriate
functions.

Operator overloading is convenient, especially for mathematically-oriented classes where a natural syntax
is desired as the instances of the class are being used. However, operator overloading can get a bit tricky
until you really understand what is going on.

Problem 5.4: Write a C++ program which contains a class declaration and definition for the following
class:

class complex {
 float real_part;
 float imag_part;
 char *name;
public:
 complex(char *, float rp = 0.0, float ip = 0.0);
 void set (float rp = 0.0, float ip = 0.0; // change value
 complex &operator = (complex &); // assign
 complex operator + (complex &); // add two objects,
 // producing a third
 complex operator - (complex &);
 complex operator * (complex &);
 void print(void); // print a x + yj
};

Write the definition for this class. In your mainline, create three complex objects (initializing them to
three different values in the process). Add two of them, assigning the result to the third. Print them out.
Subtract two of them, assigning the result to the third. Print them out.

Page 29

Workbook on C++ Programming

6. Closing
We have gone through a lot in the workbook, and it is a good idea to review some of the basic ideas,
making sure you don't loose sight of the forest for the trees:

l We organize the world as types when we do object-oriented programming. People view the
world in terms of families of related types. We have been taught to think this way since birth. Only
in traditional procedural programming must we try to fit a problem in the world into the framework
of the computer.

l C++ organizes a program as types. C++ lets you organize your code into types which reflect
the types we use when organizing a problem in the real world. The code you write becomes an
image or model of the problem you are trying to solve.

l A program has a single essential purpose. The program has a single job it must do, no matter
how complex the program seems or how much peripheral support there is for the fundamental
purpose. If you can discover the essential job of the program, it will be easy to read, modify, and
extend it. This is because a good C++ program will map the types in the real world onto types in the
computer.

l Pure abstract base classes allow us to capture real-world abstractions. Base classes generally
represent the primary concept of an object-oriented program. Because base classes represent
concepts, which are abstractions and not specific things, it does not make sense to create objects of
an abstract base class. To support this idea, C++ allows you to create pure virtual functions by
assigning the function body to zero in the class declaration (as we discussed previously). Any class
which contains a pure virtual function is a pure abstract class. No objects of a pure abstract class
can be created -- you must use classes derived from the pure abstract class. Those classes must have
definitions for the pure virtual functions.

l Programs in C++ can be readily created to be extensible. To extend a C++ program, you
must do two things:

1. Derive a new class from the abstract base class. This new class embodies the extensions you
wish to make by redefining the virtual functions in the base class.

2. You must add code at the point where you create new objects so the constructor for your new
class is called.

Extensible programs are one of the major goals of object-oriented programming because they
drastically reduce the cost of creating and maintaining software.

Page 30

Workbook on C++ Programming

Solutions

Solution 1.1
Text

µ Electronic Equipment
 |

 | |
 Business Entertainment
 | |
 ------------------- ------------------------------------
 | | | | | | |
Cash Registers Copiers | | Television Video Games Music Systems
 | |

 | |
 Telephones Computers

§

Page 31

Workbook on C++ Programming

Solution 1.2
Code

µ#define HEADER "C++ Problem 1.2 by Rick Conn using Borland C++"

#include <stdio.h>

struct complex {
 double real_part;
 double imag_part;
public:
 void set(double rp, double ip)
 {
 real_part = rp;
 imag_part = ip;
 }

 void add_one_to (void)
 {
 real_part += 1.0;
 }

 void print (void)
 {
 printf("(%5.1lfi + %5.1lfj)\n", real_part, imag_part);
 }
};

void main(void)
{
 printf("%s\n", HEADER);

 complex value;
 value.set (20.0, -30.0);
 value.print();
 value.add_one_to();
 value.print();
}

§
Output

µC++ Problem 1.2 by Rick Conn using Borland C++
(20.0i + -30.0j)
(21.0i + -30.0j)

Page 32

Workbook on C++ Programming

§

Page 33

Workbook on C++ Programming

Solution 1.3
Code

µ#define HEADER "C++ Problem 1.3 by Rick Conn using Borland C++"

#include <stdio.h>

struct P {
 int value;
public:
 void set (int);
 void print (void);
 friend void printit(P);
};

void P::set (int new_value)
{
 value = new_value;
}

void P::print (void)
{
 printf("%10d\n", value);
}

void printit (P inP)
{
 printf("%10d\n", inP.value);
}

void main(void)
{
 printf("%s\n", HEADER);

 P pobject;
 pobject.set (12);
 pobject.print();
 pobject.set (14);
 printit (pobject);
}

§
Output

µC++ Problem 1.3 by Rick Conn using Borland C++

Page 34

Workbook on C++ Programming

 12
 14

§

Page 35

Workbook on C++ Programming

Solution 1.4
Code

µ#define HEADER "C++ Problem 1.4 by Rick Conn using Borland C++"

#include <stdio.h>

class counter {
 int count;
public:
 void set(int);
 void increment(void);
 void display(void);
};

void counter::set (int new_value) {
 count = new_value;
}

void counter::increment (void) {
 count++;
}

void counter::display (void) {
 printf("The count of the object at address %p is %d\n",
 this, count);
}

void main(void)
{
 printf("%s\n", HEADER);

 counter c1, c2;
 c1.set (5);
 c2.set (-12);
 c1.display();
 c2.display();
 c1.increment();
 c2.increment();
 c1.display();
 c2.display();
}

§

Page 36

Workbook on C++ Programming

Output

µC++ Problem 1.4 by Rick Conn using Borland C++
The count of the object at address FFF4 is 5
The count of the object at address FFF2 is -12
The count of the object at address FFF4 is 6
The count of the object at address FFF2 is -11

§

Page 37

Workbook on C++ Programming

Solution 1.5
Code

µ#define HEADER "C++ Problem 1.5 by Rick Conn using Borland C++"

#include <stdio.h>

void print (int value) {
 printf("The integer value is %10d\n", value);
}

void print (double value) {
 printf("The double value is %10.2lf\n", value);
}

void main(void)
{
 printf("%s\n", HEADER);

 int i;
 double d;

 i = 4;
 d = 12.2;

 print(i);
 print(d);
}

§

Output

µC++ Problem 1.5 by Rick Conn using Borland C++
The integer value is 4
The double value is 12.20

§

Page 38

Workbook on C++ Programming

Solution 1.6
Code

µ#define HEADER "C++ Problem 1.6 by Rick Conn using Borland C++"

#include <stdio.h>

void print(int value = 1) {
 printf("The value is %2d\n", value);
}

void main(void)
{
 printf("%s\n", HEADER);

 print();
 print(20);
}

§

Output

µC++ Problem 1.6 by Rick Conn using Borland C++
The value is 1
The value is 20

§

Page 39

Workbook on C++ Programming

Solution 2.1
Code, Part 1 of 3

µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"

int fcppv21(int x) { // function definition
 return x+1; // something simple
}

§

Code, Part 2 of 3

µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
#include <stdio.h>

int fcppv21(float); // prototype with wrong arg type

void main(void)
{
 int i;

 printf("%s\n", HEADER);
 i = fcppv21(2.0);
 printf("I = %d\n", i);
}

§

Code, Part 3 of 3

µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
#include <stdio.h>

float fcppv21(int); // prototype with wrong return type

void main(void)
{
 float i;

 printf("%s\n", HEADER);
 i = fcppv21(2);
 printf("I = %d\n", i);
}

§

Page 40

Workbook on C++ Programming

Make File, 1 of 2

µ# Makefile for Demonstrating Problem 2.1
Part A: Attempt to create executable from CPPV2-12.CPP

all:
Compile definition of function into object module
bcc -c cppv2-11.cpp

Compile declaration and use of function into object
bcc -c cppv2-12.cpp

Attempt a link (fails due to argument types)
bcc cppv2-12.obj cppv2-11.obj

§

Page 41

Workbook on C++ Programming

Make File, 2 of 2

µ# Makefile for Demonstrating Problem 2.1
Part B: Create executable from CPPV2-13.CPP

all:
Compile definition of function into object module
bcc -c cppv2-11.cpp

Compile declaration and use of function into object
bcc -c cppv2-13.cpp

Link
bcc cppv2-13.obj cppv2-11.obj

Run program
cppv2-13

§

Output, 1 of 2

µMAKE Version 3.6 Copyright (c) 1991 Borland International

Available memory 1195344 bytes

 bcc -c cppv2-11.cpp

Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-11.cpp:

 Available memory 824833

 bcc -c cppv2-12.cpp

Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-12.cpp:

 Available memory 770905

 bcc cppv2-12.obj cppv2-11.obj

Borland C++ Version 3.00 Copyright (c) 1991 Borland International
Turbo Link Version 5.0 Copyright (c) 1991 Borland International
Error: Undefined symbol fcppv21(float) in module cppv2-12.cpp

Page 42

Workbook on C++ Programming

 Available memory 822621

** error 1 ** deleting all

§

Page 43

Workbook on C++ Programming

Output, 2 of 2

µMAKE Version 3.6 Copyright (c) 1991 Borland International

Available memory 1195344 bytes

 bcc -c cppv2-11.cpp
Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-11.cpp:

 Available memory 824833
 bcc -c cppv2-13.cpp
Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-13.cpp:

 Available memory 770905
 bcc cppv2-13.obj cppv2-11.obj
Borland C++ Version 3.00 Copyright (c) 1991 Borland International
Turbo Link Version 5.0 Copyright (c) 1991 Borland International

 Available memory 822621
 cppv2-13

Floating point error: Domain
Abnormal program termination
** error 3 ** deleting all

§

Page 44

Workbook on C++ Programming

Solution 2.2
Code

µ#define HEADER "C++ Problem 2.2 by Rick Conn using Borland C++"

#include <stdio.h>

class simple {
public:
 simple(); // constructor
 ~simple(); // destructor
};

simple::simple() {
 printf("Constructor invoked for object at address %p\n", this);
}

simple::~simple() {
 printf("Destructor invoked for object at address %p\n", this);
}

void main(void)
{
 printf("%s\n", HEADER);

 simple a, b, c;
 simple d;
 simple e;
}

§

Output

µC++ Problem 2.2 by Rick Conn using Borland C++
Constructor invoked for object at address FFF4
Constructor invoked for object at address FFF2
Constructor invoked for object at address FFF0
Constructor invoked for object at address FFEE
Constructor invoked for object at address FFEC
Destructor invoked for object at address FFEC
Destructor invoked for object at address FFEE
Destructor invoked for object at address FFF0
Destructor invoked for object at address FFF2
Destructor invoked for object at address FFF4

Page 45

Workbook on C++ Programming

§

Page 46

Workbook on C++ Programming

Solution 2.3
Code

µ#define HEADER "C++ Problem 2.3 by Rick Conn using Borland C++"

#include <stdio.h>

const array_size = 8;

void main(void)
{
 printf("%s\n", HEADER);

 int iarray[array_size];

 printf("The size of the array is %d\n", sizeof iarray);
 printf("The value of the const is %d\n", array_size);
}

§

Output

µC++ Problem 2.3 by Rick Conn using Borland C++
The size of the array is 16
The value of the const is 8

§

Page 47

Workbook on C++ Programming

Solution 2.4
Code

µ#define HEADER "C++ Problem 2.4 by Rick Conn using Borland C++"

#include <stdio.h>

inline void print_plus_5 (int value)
{
 value += 5;
 printf("The value plus 5 is %d\n", value);
}

void main(void)
{
 printf("%s\n", HEADER);

 print_plus_5(2);
 print_plus_5(-12);
 print_plus_5(10);
 print_plus_5(5);
 print_plus_5(-5);
 print_plus_5(-20);
 print_plus_5(20);
 print_plus_5(200);
 print_plus_5(2000);
 print_plus_5(20000);
}

§

Output

µC++ Problem 2.4 by Rick Conn using Borland C++
The value plus 5 is 7
The value plus 5 is -7
The value plus 5 is 15
The value plus 5 is 10
The value plus 5 is 0
The value plus 5 is -15
The value plus 5 is 25
The value plus 5 is 205
The value plus 5 is 2005
The value plus 5 is 20005

Page 48

Workbook on C++ Programming

§

Page 49

Workbook on C++ Programming

Solution 2.5
Code (C)

µ#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"

#include <stdio.h>

void main(void)
{
 printf("%s\n", HEADER);

 puts("This is a test\n");
 int i;
 i = 5;
 printf("I = %d\n", i);
}

§

Code (C++)

µ#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"

#include <stdio.h>

void main(void)
{
 printf("%s\n", HEADER);

 puts("This is a test\n");
 int i;
 i = 5;
 printf("I = %d\n", i);
}

§

Output

µ> bcc cppv2-5.c
Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-5.c:
Error cppv2-5.c 10: Declaration is not allowed here in function main
*** 1 errors in Compile ***

 Available memory 905112

Page 50

Workbook on C++ Programming

> bcc cppv2-5.cpp
Borland C++ Version 3.00 Copyright (c) 1991 Borland International
cppv2-5.cpp:
Turbo Link Version 5.0 Copyright (c) 1991 Borland International

 Available memory 894596
> cppv2-5
C++ Problem 2.5 by Rick Conn using Borland C++
This is a test

I = 5

§

Page 51

Workbook on C++ Programming

Solution 2.6
Code

µ#define HEADER "C++ Problem 2.6 by Rick Conn using Borland C++"

#include <stdio.h>

struct book {
 char title[40];
 char author[20];
};

void print_book (book &name)
{
 printf(" Title: %s\n", name.title);
 printf("Author: %s\n", name.author);
}

void main(void)
{
 printf("%s\n", HEADER);

 book textbook = { "Turbo C++ DiskTutor",
 "Voss & Chui" };
 book refbook = { "The Annotated C++ Reference Manual",
 "Ellis & Stroustrup" };
 print_book (textbook);
 print_book (refbook);
}

§

Output

µC++ Problem 2.6 by Rick Conn using Borland C++
 Title: Turbo C++ DiskTutor
Author: Voss & Chui
 Title: The Annotated C++ Reference Manual
Author: Ellis & Stroustrup

§

Page 52

Workbook on C++ Programming

Solution 2.7
Code

µ#define HEADER "C++ Problem 2.7 by Rick Conn using Borland C++"

#include <stdio.h>

class person {
 char *name;
public:
 person (char *my_name); // create a person with
 // a given name
 void print_me(void); // print the name of the person
 // and his address using this
};

person::person (char *my_name)
{
 name = my_name;
}

void person::print_me(void)
{
 printf("The name is %s\n", name);
 printf("The address is %p\n", this);
}

void main(void)
{
 printf("%s\n", HEADER);

 person ck ("Clark Kent");
 person s ("Superman");
 person bw ("Bruce Wayne");
 person b ("Batman");
 person bs ("Bjarne Stroustrop");

 ck.print_me();
 s.print_me();
 bw.print_me();
 b.print_me();
 bs.print_me();
}

§

Page 53

Workbook on C++ Programming

Output

µC++ Problem 2.7 by Rick Conn using Borland C++
The name is Clark Kent
The address is FFF4
The name is Superman
The address is FFF2
The name is Bruce Wayne
The address is FFF0
The name is Batman
The address is FFEE
The name is Bjarne Stroustrop
The address is FFEC

§

Page 54

Workbook on C++ Programming

Solution 3.1
Code

µ#define HEADER "C++ Problem 3.1 by Rick Conn using Borland C++"

#include <stdio.h>

class counter {
 static int object_count;
public:
 counter();
 static int get_count(void);
};

int counter::object_count = 0; // init count

counter::counter() { counter::object_count++; }

int counter::get_count(void)
{
 return counter::object_count;
}

void main(void)
{
 printf("%s\n", HEADER);

 counter c1;
 printf("The count is %d\n",
 c1.get_count());

 counter c2;
 printf("The count is %d\n",
 counter::get_count());

 counter c3;
 printf("The count is %d\n",
 c3.get_count());

 counter c4;
 printf("The count is %d\n",
 c4.get_count());

 counter c5;
 printf("The count is %d\n",

Page 55

Workbook on C++ Programming

 c5.get_count());
}

§

Output

µC++ Problem 3.1 by Rick Conn using Borland C++
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5

§

Page 56

Workbook on C++ Programming

Solution 3.2
Code

µ#define HEADER "C++ Problem 3.2 by Rick Conn using Borland C++"

#include <stdio.h>
#include <string.h> // for strcpy()

const max_string_length = 100;

class string {
 char data[max_string_length];
 static int number_of_strings;
public:
 string (char *);
 static int count (void);
 void print (void);
};

int string::number_of_strings = 0;

string::string(char *new_string) {
 strcpy(data, new_string);
 string::number_of_strings++;
}

int string::count(void) {
 return number_of_strings;
}

void string::print(void) {
 printf("String = \"%s\"\n", data);
}

void main(void)
{
 printf("%s\n", HEADER);

 string s1("This is a test");
 string s2("This is only a test");
 string s3("This is fun");
 printf("The count is %d\n", string::count());

 string s4("Another string");
 string s5("Yet another string");

Page 57

Workbook on C++ Programming

 printf("The count is %d\n", string::count());

 s1.print();
 s2.print();
 s3.print();
 s4.print();
 s5.print();
}

§

Page 58

Workbook on C++ Programming

Output

µC++ Problem 3.2 by Rick Conn using Borland C++
The count is 3
The count is 5
String = "This is a test"
String = "This is only a test"
String = "This is fun"
String = "Another string"
String = "Yet another string"

§

Page 59

Workbook on C++ Programming

Solution 3.3
Code

µ#define HEADER "C++ Problem 3.3 by Rick Conn using Borland C++"

#include <stdio.h>
#include <string.h> // for strcpy()
#include <mem.h> // for memcpy()

class note {
 char text[40];
public:
 note (char *cp = "");
 void print (void);
};

class note_book {
 note *narray[10];
 int number_of_notes;
public:
 note_book();
 void add (note *);
 void print(void);
};

note::note (char *value) { strcpy(text, value); }

void note::print(void) { printf("Note: %s\n", text); }

note_book::note_book() { number_of_notes = 0; }

void note_book::add (note *newnote) {
 narray[number_of_notes] = newnote;
 number_of_notes++;
}

void note_book::print(void) {
 int i;

 for (i=0; i<number_of_notes; i++) {
 printf("%2d: ", i);
 narray[i] -> print();
 }
}

Page 60

Workbook on C++ Programming

void main(void)
{
 printf("%s\n", HEADER);

 note_book nb;

 note n1("This is a test"); note n2("This is only a test");
 note n3("How far will I go?"); note n4("Perhaps just so far");
 note n5("This is fun"); note n6("This is boring");
 note n7("This works");

 nb.add (&n1); nb.add (&n2); nb.add (&n3); nb.add (&n4);
 nb.add (&n5); nb.add (&n6); nb.add (&n7);

 nb.print();
}

§

Output

µC++ Problem 3.3 by Rick Conn using Borland C++
 0: Note: This is a test
 1: Note: This is only a test
 2: Note: How far will I go?
 3: Note: Perhaps just so far
 4: Note: This is fun
 5: Note: This is boring
 6: Note: This works

§

Page 61

Workbook on C++ Programming

Solution 4.1
Header File

µ// CPPV4-1.H by Rick Conn Using Borland C++
#ifndef COMPLEX_H_
#define COMPLEX_H_

// COMPLEX Class
class complex {
 float real_part;
 float imag_part;
 char *name;
public:
 complex (char *, float rp=0.0, float ip=0.0);
 void set (float rp=0.0, float ip=0.0);
 complex & operator= (complex &);
 complex operator+ (complex &right);
 complex operator- (complex &right);
 complex operator* (complex &right);
 void print(void);
};

complex::complex (char *n, float rp, float ip) {
 name = n; real_part = rp; imag_part = ip;
}

void complex::set (float rp, float ip) {
 real_part = rp; imag_part = ip;
}

complex & complex::operator= (complex &arg) {
 real_part = arg.real_part;
 imag_part = arg.imag_part;
 return *this;
}

complex complex::operator+ (complex &right) {
 complex result ("Temp");
 result.real_part = real_part + right.real_part;
 result.imag_part = imag_part + right.imag_part;
 return result;
}

complex complex::operator- (complex &right) {
 complex result ("Temp");

Page 62

Workbook on C++ Programming

 result.real_part = real_part - right.real_part;
 result.imag_part = imag_part - right.imag_part;
 return result;
}

complex complex::operator* (complex &right) {
 complex result ("Temp");
 result.real_part = real_part * right.real_part -
 imag_part * right.imag_part;
 result.imag_part = imag_part * right.real_part +
 real_part * right.imag_part;
 return result;
}

void complex::print(void) {
 printf(" %s: %10.5f + %10.5fi\n",
 name, real_part, imag_part);
}

#endif // COMPLEX_H_

§

Code

µ#define HEADER "C++ Problem 4.1 by Rick Conn using Borland C++"

#include <stdio.h>
#include "cppv4-1.h"

void main(void)
{
 printf("%s\n", HEADER);

 complex a("A"), b("B", 2.0, 3.0), c("C");

 a = b;
 printf("A = B\n");
 a.print(); b.print(); c.print();
 a.set(5.0, -4.0);
 printf("A = 5 - 4i\n");
 a.print(); b.print(); c.print();
 c = a + b;
 printf("C = A + B\n");
 a.print(); b.print(); c.print();
 c = a - b;

Page 63

Workbook on C++ Programming

 printf("C = A - B\n");
 a.print(); b.print(); c.print();
 c = a * b;
 printf("C = A * B\n");
 a.print(); b.print(); c.print();
}

§

Output

µC++ Problem 4.1 by Rick Conn using Borland C++
A = B
 A: 2.00000 + 3.00000i
 B: 2.00000 + 3.00000i
 C: 0.00000 + 0.00000i
A = 5 - 4i
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 0.00000 + 0.00000i
C = A + B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 7.00000 + -1.00000i
C = A - B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 3.00000 + -7.00000i
C = A * B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 22.00000 + 7.00000i

§

Page 64

Workbook on C++ Programming

Solution 4.2
Code

µ#define HEADER "C++ Problem 4.2 by Rick Conn using Borland C++"

#include <stdio.h>

class number {
protected:
 int value;
public:
 number (int new_value = 0);
 void set (int new_value = 0);
};

class pnumber : public number {
public:
 // Note: I had to add a constructor for pnumber
 // because number's constructor required an argument
 pnumber (int new_value = 0);
 void print(void);
};

number::number(int new_value) {
 value = new_value;
}

void number::set (int new_value) {
 value = new_value;
}

pnumber::pnumber(int new_value) {
 value = new_value;
}

void pnumber::print (void) {
 printf("The value is %d\n", value);
}

void main(void)
{
 printf("%s\n", HEADER);

 pnumber a (12), b(20), c(0);
 a.print(); b.print(); c.print();

Page 65

Workbook on C++ Programming

 a.set(1); b.set(2); c.set(3);
 a.print(); b.print(); c.print();
}

§

Output

µC++ Problem 4.2 by Rick Conn using Borland C++
The value is 12
The value is 20
The value is 0
The value is 1
The value is 2
The value is 3

§

Page 66

Workbook on C++ Programming

Solution 4.3
Code

µ#define HEADER "C++ Problem 4.3 by Rick Conn using Borland C++"

#include <stdio.h>
#include <time.h>

class time_stamp {
 time_t stamp;
public:
 time_stamp();
 void showtime(void);
};

time_stamp::time_stamp() {
 time (&stamp);
}

void time_stamp::showtime(void) {
 printf("Time Stamp: %s", ctime (&stamp));
}

class message : private time_stamp {
 char *msg;
public:
 message (char *);
 void print(void);
};

message::message (char *m) {
 msg = m;
}

void message::print(void) {
 printf("Message \"%s\" ", msg);
 showtime();
}

class message2 : public time_stamp {
 char *msg;
public:
 message2 (char *);
 void print(void);
};

Page 67

Workbook on C++ Programming

message2::message2 (char *m) {
 msg = m;
}

void message2::print(void) {
 printf("Message2 \"%s\" ", msg);
 showtime();
}

void main(void)
{
 printf("%s\n", HEADER);

 message m1("This is a test");
 message2 m2("Another test");

 // All member functions of message
 m1.print();

 // All member functions of message2
 m2.print();
 m2.showtime();
}

§

Output

µC++ Problem 4.3 by Rick Conn using Borland C++
Message "This is a test" Time Stamp: Mon Feb 10 05:35:39 1992
Message2 "Another test" Time Stamp: Mon Feb 10 05:35:39 1992
Time Stamp: Mon Feb 10 05:35:39 1992

§

Page 68

Workbook on C++ Programming

Solution 4.4
Code

µ#define HEADER "C++ Problem 4.4 by Rick Conn using Borland C++"

#include <stdio.h>
#include <time.h>

class time_stamp {
 time_t stamp;
public:
 time_stamp();
 ~time_stamp();
 void showtime(void);
};

time_stamp::time_stamp() {
 time (&stamp);
 printf(" Time_Stamp constructor called\n");
}

time_stamp::~time_stamp() {
 printf(" Time_Stamp destructor called\n");
}
void time_stamp::showtime(void) {
 printf("Time Stamp: %s", ctime (&stamp));
}

class message : private time_stamp {
 char *msg;
public:
 message (char *);
 ~message();
 void print(void);
};

message::message (char *m) {
 msg = m;
 printf(" Message constructor called\n");
}
message::~message() {
 printf(" Message destructor called\n");
}
void message::print(void) {
 printf("Message \"%s\" ", msg);

Page 69

Workbook on C++ Programming

 showtime();
}

class message2 : public time_stamp {
protected:
 char *msg;
public:
 message2 (char *);
 ~message2();
 void print(void);
};

message2::message2 (char *m) {
 msg = m;
 printf(" Message2 constructor called\n");
}
message2::~message2() {
 printf(" Message2 destructor called\n");
}
void message2::print(void) {
 printf("Message2 \"%s\" ", msg);
 showtime();
}

class priority_message : public message2 {
 char *urgency;
public:
 priority_message (char *m, char *u);
 ~priority_message();
 void print(void); // includes urgency info
};

priority_message::priority_message (char *m, char *u) :
 message2(m) {
 urgency = u;
 printf(" Priority_Message constructor called\n");
}
priority_message::~priority_message() {
 printf(" Priority_Message destructor called\n");
}
void priority_message::print(void) {
 printf("Urgency %s: %s -- ", urgency, msg);
 showtime();
}

Page 70

Workbook on C++ Programming

void main(void)
{
 printf("%s\n", HEADER);

 priority_message pm1("This is a test", "Routine");
 priority_message pm2("Em Situation", "Emergency");

 pm1.print();
 pm2.print();
}

§

Output

µC++ Problem 4.4 by Rick Conn using Borland C++
 Time_Stamp constructor called
 Message2 constructor called
 Priority_Message constructor called
 Time_Stamp constructor called
 Message2 constructor called
 Priority_Message constructor called
Urgency Routine: This is a test -- Time Stamp: Mon Feb 10 05:50:10 1992
Urgency Emergency: Em Situation -- Time Stamp: Mon Feb 10 05:50:10 1992
 Priority_Message destructor called
 Message2 destructor called
 Time_Stamp destructor called
 Priority_Message destructor called
 Message2 destructor called
 Time_Stamp destructor called

§

Page 71

Workbook on C++ Programming

Solution 4.5
Code

µ#define HEADER "C++ Problem 4.5 by Rick Conn using Borland C++"

#include <stdio.h>

class base {
protected:
 char *msg;
public:
 base(char *);
 ~base();
 void print(void);
};

class derived1 : base {
public:
 derived1(char *);
 ~derived1();
};

class derived2 : derived1 {
public:
 derived2(char *);
 ~derived2();
};

base::base (char *m) {
 msg = m;
 printf("Base constructor called with message %s\n", msg);
}

base::~base() {
 printf(" Base destructor called with message %s\n", msg);
}

void base::print(void) {
 printf(" with message %s\n", msg);
}

derived1::derived1 (char *m) : base(m) {
 printf(" Derived1 constructor called");
 print();
}

Page 72

Workbook on C++ Programming

derived1::~derived1() {
 printf(" Derived1 destructor called");
 print();
}

derived2::derived2 (char *m) : derived1(m) {
 printf(" Derived2 constructor called\n");
}

derived2::~derived2() {
 printf("Derived2 destructor called\n");
}

void main(void)
{
 printf("%s\n", HEADER);

 derived2 x ("X");
 {
 derived2 y ("Y");
 }
 derived2 z ("Z");
}

§

Output

µC++ Problem 4.5 by Rick Conn using Borland C++
Base constructor called with message X
 Derived1 constructor called with message X
 Derived2 constructor called
Base constructor called with message Y
 Derived1 constructor called with message Y
 Derived2 constructor called
Derived2 destructor called
 Derived1 destructor called with message Y
 Base destructor called with message Y
Base constructor called with message Z
 Derived1 constructor called with message Z
 Derived2 constructor called
Derived2 destructor called
 Derived1 destructor called with message Z
 Base destructor called with message Z
Derived2 destructor called

Page 73

Workbook on C++ Programming

 Derived1 destructor called with message X
 Base destructor called with message X

§

Page 74

Workbook on C++ Programming

Solution 5.1
Code

µ#define HEADER "C++ Problem 5.1 by Rick Conn using Borland C++"

#include <stdio.h>

class wheel {
 int wheel_diameter;
public:
 wheel (int diameter);
 void print(void);
};

class vehicle {
 int horse_power;
 wheel lfront, rfront, lrear, rrear;
public:
 vehicle (int hp,
 int diameter_of_each_wheel);
 void print(void);
};

wheel::wheel (int diameter) { wheel_diameter = diameter; }

void wheel::print(void) {
 printf("Wheel diameter = %d\n", wheel_diameter);
}

vehicle::vehicle (int hp,
 int diameter_of_each_wheel) :
 horse_power(hp),
 lfront(diameter_of_each_wheel),
 rfront(diameter_of_each_wheel),
 lrear(diameter_of_each_wheel),
 rrear(diameter_of_each_wheel)
{
 // nothing else to be done
}

void vehicle::print(void) {
 printf("Horse Power = %d\n", horse_power);
 lfront.print();
 rfront.print();
 lrear.print();

Page 75

Workbook on C++ Programming

 rrear.print();
}

void main(void)
{
 printf("%s\n", HEADER);

 vehicle v (190, 32);
 v.print();
}

§

Page 76

Workbook on C++ Programming

Output

µC++ Problem 5.1 by Rick Conn using Borland C++
Horse Power = 190
Wheel diameter = 32
Wheel diameter = 32
Wheel diameter = 32
Wheel diameter = 32

§

Page 77

Workbook on C++ Programming

Solution 5.2
Code

µ#define HEADER "C++ Problem 5.2 by Rick Conn using Borland C++"

#include <stdio.h>

enum pet_kind {doggy, kitty, neither};

class pet {
 pet_kind pk;
public:
 pet(pet_kind);
 void speak(void);
 pet_kind type(void);
};

class dog : public pet {
public:
 dog();
 void speak(void);
};

class cat : public pet {
public:
 cat();
 void speak(void);
};

pet::pet(pet_kind kind) {
 pk = kind;
}

void pet::speak(void) {
 printf("silence\n");
}

pet_kind pet::type(void) {
 return pk;
}

dog::dog() : pet(doggy) {
 // nothing to do
}

Page 78

Workbook on C++ Programming

void dog::speak(void) {
 printf("woof\n");
}

cat::cat() : pet(kitty) {
 // nothing to do
}

void cat::speak(void) {
 printf("meow\n");
}

void talk (pet *p) {
 switch (p->type()) {
 case doggy : ((dog *)p) -> speak();
 break;
 case kitty : ((cat *)p) -> speak();
 break;
 default : p -> speak();
 break;
 }
}

void main(void)
{
 printf("%s\n", HEADER);

 dog scotty;
 cat fluffy;
 pet funny (neither);

 talk(&scotty);
 talk(&fluffy);
 talk(&funny);
}

§

Output

µC++ Problem 5.2 by Rick Conn using Borland C++
woof
meow
silence

§

Page 79

Workbook on C++ Programming

Page 80

Workbook on C++ Programming

Solution 5.3
Code

µ#define HEADER "C++ Problem 5.3 by Rick Conn using Borland C++"

#include <stdio.h>

enum pet_kind {doggy, kitty, neither};

class pet {
 pet_kind pk;
public:
 pet(pet_kind);
 virtual void speak(void);
 pet_kind type(void);
};

class dog : public pet {
public:
 dog();
 void speak(void);
};

class cat : public pet {
public:
 cat();
 void speak(void);
};

pet::pet(pet_kind kind) {
 pk = kind;
}

void pet::speak(void) { }

pet_kind pet::type(void) {
 return pk;
}

dog::dog() : pet(doggy) {
 // nothing to do
}

void dog::speak(void) {
 printf("woof\n");

Page 81

Workbook on C++ Programming

}

cat::cat() : pet(kitty) {
 // nothing to do
}

void cat::speak(void) {
 printf("meow\n");
}

void talk (pet *p) {
 p -> speak();
}

void main(void)
{
 printf("%s\n", HEADER);

 dog scotty;
 cat fluffy;

 talk(&scotty);
 talk(&fluffy);
}

§

Output

µC++ Problem 5.3 by Rick Conn using Borland C++
woof
meow

§

Page 82

Workbook on C++ Programming

Solution 5.4
Code

µ#define HEADER "C++ Problem 5.4 by Rick Conn using Borland C++"

#include <stdio.h>

// COMPLEX Class
class complex {
 float real_part;
 float imag_part;
 char *name;
public:
 complex (char *, float rp=0.0, float ip=0.0);
 void set (float rp=0.0, float ip=0.0);
 complex & operator= (complex &);
 complex operator+ (complex &right);
 complex operator- (complex &right);
 complex operator* (complex &right);
 void print(void);
};

complex::complex (char *n, float rp, float ip) {
 name = n; real_part = rp; imag_part = ip;
}

void complex::set (float rp, float ip) {
 real_part = rp; imag_part = ip;
}

complex & complex::operator= (complex &arg) {
 real_part = arg.real_part;
 imag_part = arg.imag_part;
 return *this;
}

complex complex::operator+ (complex &right) {
 complex result ("Temp");
 result.real_part = real_part + right.real_part;
 result.imag_part = imag_part + right.imag_part;
 return result;
}

complex complex::operator- (complex &right) {
 complex result ("Temp");

Page 83

Workbook on C++ Programming

 result.real_part = real_part - right.real_part;
 result.imag_part = imag_part - right.imag_part;
 return result;
}

complex complex::operator* (complex &right) {
 complex result ("Temp");
 result.real_part = real_part * right.real_part -
 imag_part * right.imag_part;
 result.imag_part = imag_part * right.real_part +
 real_part * right.imag_part;
 return result;
}

void complex::print(void) {
 printf(" %s: %10.5f + %10.5fi\n",
 name, real_part, imag_part);
}

void main(void)
{
 printf("%s\n", HEADER);

 complex a("A"), b("B", 2.0, 3.0), c("C");

 a = b;
 printf("A = B\n");
 a.print(); b.print(); c.print();
 a.set(5.0, -4.0);
 printf("A = 5 - 4i\n");
 a.print(); b.print(); c.print();
 c = a + b;
 printf("C = A + B\n");
 a.print(); b.print(); c.print();
 c = a - b;
 printf("C = A - B\n");
 a.print(); b.print(); c.print();
 c = a * b;
 printf("C = A * B\n");
 a.print(); b.print(); c.print();
}

§

Output

Page 84

Workbook on C++ Programming

µC++ Problem 5.4 by Rick Conn using Borland C++
A = B
 A: 2.00000 + 3.00000i
 B: 2.00000 + 3.00000i
 C: 0.00000 + 0.00000i
A = 5 - 4i
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 0.00000 + 0.00000i
C = A + B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 7.00000 + -1.00000i
C = A - B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 3.00000 + -7.00000i
C = A * B
 A: 5.00000 + -4.00000i
 B: 2.00000 + 3.00000i
 C: 22.00000 + 7.00000i

§

Page 85

	1. Types and Functions
	1.1. Modeling the World with Types
	1.2. Types = Structs + Functions
	struct elevator {
	int floor_selected;
	int floor_number;
	void initialize(); // function declaration in the scope
	// of the struct
	void select_floor (int floor);
	void go();
	};
	void typename::member_name() { /* function body */ };
	void elevator::initialize() {
	floor_selected = 0;
	floor_number = 0;
	}
	int my_var; // global variable
	void main (void) {
	int my_var; // local variable
	my_var = 1; // this sets the local variable above
	::my_var = 2; // this sets the global variable
	}
	struct elevator my_elevator; // create an elevator object
	elevator his_elevator; // "struct" not needed
	my_elevator.initialize();
	his_elevator.initialize();
	1.3. Data Protection
	struct protection_example {
	int public_can_change_this; // public by default
	private:
	float public_can_not_change_this;
	protected:
	float public_can_not_change_this_also; // unless you
	// inherit
	};
	struct P {
	private:
	int value;
	public:
	void set (int);
	void print (void);
	friend void printit (P);
	};
	1.4. Classes
	1.5. Function Overloading
	void f(int);
	void f(int, char);
	float f(double);
	void f(int);
	double f(int);
	1.6. Default Function Arguments
	void g(float f, float f2 = 1.1, char x = 'i');
	g(12.2); // f=12.2, f2=1.1, x='i'
	g(20.0, 4.0); // f=20.0, f2=4.0, x='i'
	g(100.0, 200.0, 'a'); // f=100.0, f2=200.0, x='a'

	2. More C++ Basics
	2.1. Type-Safe Linkage
	extern "C" { float round(float); }
	2.2. Constructors and Destructors
	class complex {
	float real_part;
	float imag_part;
	public:
	complex(); // object is initialized to zero
	void set (float rp, float ip);
	void print(void);
	};
	complex value; // space is allocated and value is set to
	// 0,0
	class complex {
	float real_part;
	float imag_part;
	public:
	complex(); // object is initialized to zero
	complex(float rp); // init only real part, imag is 0
	complex(float rp, float ip); // init both parts
	void set (float rp, float ip);
	void print(void);
	};
	complex val1; // val1 = 0.0i + 0.0j
	complex val2(2.0); // val2 = 2.0i + 0.0j
	complex val3(4.4, 5.5); // val3 = 4.4i + 5.5j
	class complex {
	float real_part;
	float imag_part;
	public:
	complex(float rp = 0.0, float ip = 0.0); // init 3 ways
	void set (float rp, float ip);
	void print(void);
	};
	class complex {
	float real_part;
	float imag_part;
	public:
	complex(float rp = 0.0, float ip = 0.0); // init 3 ways
	~complex(); // destructor
	void set (float rp, float ip);
	void print(void);
	};
	2.3. Const
	const a = 1; // int is assumed
	const float pi = 3.14159;
	const char exit_command = 'x';
	2.4. Inline
	2.5. Objects May Be Defined Anywhere
	complex a; // create complex number a
	a.print(); // print it
	complex b; // create complex number b
	b.print(); // print it
	2.6. References
	// Exchange function in C++
	void exchange (int &left, int &right)
	{
	int temp;
	temp = left;
	left = right;
	right = temp;
	}
	// Code which calls this exchange () function
	int a = 5, b = 4;
	exchange (a, b); // pointers to a and b are passed
	/* Exchange function in C */
	void exchange (int *left, int *right)
	{
	int temp;
	temp = *left;
	*left = *right;
	*right = temp;
	}
	/* Code which calls this exchange () function */
	int a = 5, b = 4;
	exchange (&a, &b); /* pointers must be created by user */
	struct book {
	char title[40];
	char author[20];
	};
	2.7. this
	class person {
	char *name;
	public:
	person (char *my_name); // create a person with a given
	// name
	void print_me(void); // print the name of a person and
	// his address using this
	};

	3. Even More C++ Basics
	3.1. Static Class Members
	class demo_static {
	static int i; // only one of these is created
	int j; // one is created local to each object
	public:
	static void f();
	};
	demo_static x, y, z; // one int i is created and 3 int j's
	int demo_static::i = 0;
	object.f(); // access f() through an object
	demo_static::f(); // access f() without an object
	class counter {
	static int object_count;
	public:
	counter();
	static int get_count(void);
	};
	3.2. Dynamic Object Creation
	string *s = new string ("hello");
	delete s;
	const max_string_length = 100;
	class string {
	char data[max_string_length];
	static int number_of_strings;
	public:
	string(char *); // place arg string into buffer and
	// increment number_of_strings
	static int count(void); // return number_of_strings
	void print(void); // print current string
	};
	3.3. Container Classes
	class note {
	char text[40];
	public:
	note (char * = " "); // create a note
	void print (void); // print the note
	};
	class note_book {
	note *narray[10];
	int number_of_notes;
	public:
	note_book(); // init number_of_notes
	void add (note *); // add a note to the note_book
	void print(void); // print out the note_book
	};

	4. Classes and Inheritance
	4.1. Designing Header Files
	// Header file for a stack class
	// This preface ensures that the header file will never
	// be included twice
	#ifndef STACK_H_
	#define STACK_H_
	const stack_size = 100;
	class stack {
	int stack[stack_size];
	int top_of_stack; // index of the next available element
	// in the stack array
	public:
	stack(); // init top_of_stack to zero
	void push (int); // place an element on the stack
	int pop (void); // extract an element from the stack
	int is_full (void); // return 1 if stack is full,
	//0 otherwise
	int is_empty (void); // return 1 if stack is empty,
	//0 otherwise
	};
	#endif // STACK_H_
	#ifndef FILE_H_
	#define FILE_H_
	// code for the body
	#endif // FILE_H_
	4.2. Inheritance
	class derived : base {
	// declaration of class derived goes here
	};
	class number {
	protected:
	int value;
	public:
	number(int new_value = 0);
	void set (int new_value = 0); // change existing number
	};
	4.3. More Inheritance
	// TSTAMP.H: type of signal which remembers its creation
	// time
	#ifndef TSTAMP_H_
	#define TSTAMP_H_
	// Provide access to time(), ctime(), and printf()
	#include <time.h>
	#include <stdio.h>
	class time_stamp {
	time_t stamp
	public:
	time_stamp(); // set time stamp
	void showtime(void); // display time stamp
	};
	#endif // TSTAMP.H
	// TSTAMP.CPP: implementation of TSTAMP
	#include "tstamp.h"
	time_stamp::time_stamp() {
	time (&stamp); // get time from system
	}
	void time_stamp::showtime(void) {
	printf("Time Stamp: %sn", ctime (&stamp));
	}
	class message : private time_stamp {
	char *msg;
	public:
	message(char *); // init the msg ptr
	void print(void); // print the message with date and time
	};
	class message2 : public time_stamp { // keyword public
	// may be omitted
	char *msg;
	public:
	message(char *); // init the msg ptr
	void print(void); // print the message with date and time
	};
	4.4. Base Class Constructors
	class base {
	public:
	base(char *); // requires a string
	};
	class derived : base {
	public:
	derived (char *); // requires a string to be passed to
	// base
	};
	derived::derived(char *data) : base (data) {
	// details of derived constructor
	}
	4.5. Base Class Destructors
	class base {
	char *msg;
	public:
	base(char *); // prints message only
	~base(); // prints an exit message
	void print(void); // print msg
	};
	class derived1 : base {
	public:
	derived1(char *); // prints a different message
	~derived1(); // prints an exit message
	};
	class derived2 : derived1 {
	public:
	derived2(char *); // prints a 3rd message
	~derived2(); // prints an exit message
	};
	void main(void)
	{
	derived2 x("X"); // in scope of main()
	{ // establishing a new scope in scope of main()
	derived2 y("Y");
	}
	derived2 z("Z"); // also in scope of main()
	}

	5. Families of Types and More Features of C++
	5.1. Composition
	class wheel {
	int wheel_diameter;
	public:
	wheel(int diameter); // set wheel diameter
	void print(void);
	};
	class vehicle {
	int horse_power;
	wheel lfront, rfront, lrear, rrear;
	public:
	vehicle (int hp,
	int diameter_of_each_wheel);
	void print(void);
	};
	wheel::wheel(int diameter) { wheel_diameter = diameter; }
	vehicle::vehicle (int hp,
	int diameter_of_each_wheel) :
	horse_power(hp), // init like an assignment
	lfront (diameter_of_each_wheel), // init each object
	rfront (diameter_of_each_wheel),
	lrear (diameter_of_each_wheel),
	rrear (diameter_of_each_wheel)
	{
	// nothing else to be done
	}
	5.2. Creating Families of Types
	5.3. Virtual Functions
	virtual void speak() = 0;
	5.4. Operator Overloading
	a + b;
	class complex {
	float real_part;
	float imag_part;
	char *name;
	public:
	complex(char *, float rp = 0.0, float ip = 0.0);
	void set (float rp = 0.0, float ip = 0.0; // change value
	complex &operator = (complex &); // assign
	complex operator + (complex &); // add two objects,
	// producing a third
	complex operator - (complex &);
	complex operator * (complex &);
	void print(void); // print a x + yj
	};

	6. Closing
	Solutions
	Solution 1.1
	µ Electronic Equipment
	|

	| |
	Business Entertainment
	| |
	------------------- ------------------------------------
	| | | | | | |
	Cash Registers Copiers | | Television Video Games Music Systems
	| |

	| |
	Telephones Computers
	§

	Solution 1.2
	µ#define HEADER "C++ Problem 1.2 by Rick Conn using Borland C++"
	#include <stdio.h>
	struct complex {
	double real_part;
	double imag_part;
	public:
	void set(double rp, double ip)
	{
	real_part = rp;
	imag_part = ip;
	}
	void add_one_to (void)
	{
	real_part += 1.0;
	}
	void print (void)
	{
	printf("(%5.1lfi + %5.1lfj)n", real_part, imag_part);
	}
	};
	void main(void)
	{
	printf("%sn", HEADER);
	complex value;
	value.set (20.0, -30.0);
	value.print();
	value.add_one_to();
	value.print();
	}
	µC++ Problem 1.2 by Rick Conn using Borland C++
	(20.0i + -30.0j)
	(21.0i + -30.0j)
	§

	Solution 1.3
	µ#define HEADER "C++ Problem 1.3 by Rick Conn using Borland C++"
	#include <stdio.h>
	struct P {
	int value;
	public:
	void set (int);
	void print (void);
	friend void printit(P);
	};
	void P::set (int new_value)
	{
	value = new_value;
	}
	void P::print (void)
	{
	printf("%10dn", value);
	}
	void printit (P inP)
	{
	printf("%10dn", inP.value);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	P pobject;
	pobject.set (12);
	pobject.print();
	pobject.set (14);
	printit (pobject);
	}
	µC++ Problem 1.3 by Rick Conn using Borland C++
	12
	14
	§

	Solution 1.4
	µ#define HEADER "C++ Problem 1.4 by Rick Conn using Borland C++"
	#include <stdio.h>
	class counter {
	int count;
	public:
	void set(int);
	void increment(void);
	void display(void);
	};
	void counter::set (int new_value) {
	count = new_value;
	}
	void counter::increment (void) {
	count++;
	}
	void counter::display (void) {
	printf("The count of the object at address %p is %dn",
	this, count);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	counter c1, c2;
	c1.set (5);
	c2.set (-12);
	c1.display();
	c2.display();
	c1.increment();
	c2.increment();
	c1.display();
	c2.display();
	}
	§
	µC++ Problem 1.4 by Rick Conn using Borland C++
	The count of the object at address FFF4 is 5
	The count of the object at address FFF2 is -12
	The count of the object at address FFF4 is 6
	The count of the object at address FFF2 is -11
	§

	Solution 1.5
	µ#define HEADER "C++ Problem 1.5 by Rick Conn using Borland C++"
	#include <stdio.h>
	void print (int value) {
	printf("The integer value is %10dn", value);
	}
	void print (double value) {
	printf("The double value is %10.2lfn", value);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	int i;
	double d;
	i = 4;
	d = 12.2;
	print(i);
	print(d);
	}
	§
	µC++ Problem 1.5 by Rick Conn using Borland C++
	The integer value is 4
	The double value is 12.20
	§

	Solution 1.6
	µ#define HEADER "C++ Problem 1.6 by Rick Conn using Borland C++"
	#include <stdio.h>
	void print(int value = 1) {
	printf("The value is %2dn", value);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	print();
	print(20);
	}
	§
	µC++ Problem 1.6 by Rick Conn using Borland C++
	The value is 1
	The value is 20
	§

	Solution 2.1
	µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
	int fcppv21(int x) { // function definition
	return x+1; // something simple
	}
	§
	µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
	#include <stdio.h>
	int fcppv21(float); // prototype with wrong arg type
	void main(void)
	{
	int i;
	printf("%sn", HEADER);
	i = fcppv21(2.0);
	printf("I = %dn", i);
	}
	§
	µ#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
	#include <stdio.h>
	float fcppv21(int); // prototype with wrong return type
	void main(void)
	{
	float i;
	printf("%sn", HEADER);
	i = fcppv21(2);
	printf("I = %dn", i);
	}
	§
	µ# Makefile for Demonstrating Problem 2.1
	# Part A: Attempt to create executable from CPPV2-12.CPP
	all:
	# Compile definition of function into object module
	bcc -c cppv2-11.cpp
	# Compile declaration and use of function into object
	bcc -c cppv2-12.cpp
	# Attempt a link (fails due to argument types)
	bcc cppv2-12.obj cppv2-11.obj
	§
	µ# Makefile for Demonstrating Problem 2.1
	# Part B: Create executable from CPPV2-13.CPP
	all:
	# Compile definition of function into object module
	bcc -c cppv2-11.cpp
	# Compile declaration and use of function into object
	bcc -c cppv2-13.cpp
	# Link
	bcc cppv2-13.obj cppv2-11.obj
	# Run program
	cppv2-13
	§
	µMAKE Version 3.6 Copyright (c) 1991 Borland International
	Available memory 1195344 bytes
	bcc -c cppv2-11.cpp
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-11.cpp:
	Available memory 824833
	bcc -c cppv2-12.cpp
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-12.cpp:
	Available memory 770905
	bcc cppv2-12.obj cppv2-11.obj
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	Turbo Link Version 5.0 Copyright (c) 1991 Borland International
	Error: Undefined symbol fcppv21(float) in module cppv2-12.cpp
	Available memory 822621
	** error 1 ** deleting all
	§
	µMAKE Version 3.6 Copyright (c) 1991 Borland International
	Available memory 1195344 bytes
	bcc -c cppv2-11.cpp
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-11.cpp:
	Available memory 824833
	bcc -c cppv2-13.cpp
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-13.cpp:
	Available memory 770905
	bcc cppv2-13.obj cppv2-11.obj
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	Turbo Link Version 5.0 Copyright (c) 1991 Borland International
	Available memory 822621
	cppv2-13
	Floating point error: Domain
	Abnormal program termination
	** error 3 ** deleting all
	§

	Solution 2.2
	µ#define HEADER "C++ Problem 2.2 by Rick Conn using Borland C++"
	#include <stdio.h>
	class simple {
	public:
	simple(); // constructor
	~simple(); // destructor
	};
	simple::simple() {
	printf("Constructor invoked for object at address %pn", this);
	}
	simple::~simple() {
	printf("Destructor invoked for object at address %pn", this);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	simple a, b, c;
	simple d;
	simple e;
	}
	§
	µC++ Problem 2.2 by Rick Conn using Borland C++
	Constructor invoked for object at address FFF4
	Constructor invoked for object at address FFF2
	Constructor invoked for object at address FFF0
	Constructor invoked for object at address FFEE
	Constructor invoked for object at address FFEC
	Destructor invoked for object at address FFEC
	Destructor invoked for object at address FFEE
	Destructor invoked for object at address FFF0
	Destructor invoked for object at address FFF2
	Destructor invoked for object at address FFF4
	§

	Solution 2.3
	µ#define HEADER "C++ Problem 2.3 by Rick Conn using Borland C++"
	#include <stdio.h>
	const array_size = 8;
	void main(void)
	{
	printf("%sn", HEADER);
	int iarray[array_size];
	printf("The size of the array is %dn", sizeof iarray);
	printf("The value of the const is %dn", array_size);
	}
	§
	µC++ Problem 2.3 by Rick Conn using Borland C++
	The size of the array is 16
	The value of the const is 8
	§

	Solution 2.4
	µ#define HEADER "C++ Problem 2.4 by Rick Conn using Borland C++"
	#include <stdio.h>
	inline void print_plus_5 (int value)
	{
	value += 5;
	printf("The value plus 5 is %dn", value);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	print_plus_5(2);
	print_plus_5(-12);
	print_plus_5(10);
	print_plus_5(5);
	print_plus_5(-5);
	print_plus_5(-20);
	print_plus_5(20);
	print_plus_5(200);
	print_plus_5(2000);
	print_plus_5(20000);
	}
	§
	µC++ Problem 2.4 by Rick Conn using Borland C++
	The value plus 5 is 7
	The value plus 5 is -7
	The value plus 5 is 15
	The value plus 5 is 10
	The value plus 5 is 0
	The value plus 5 is -15
	The value plus 5 is 25
	The value plus 5 is 205
	The value plus 5 is 2005
	The value plus 5 is 20005
	§

	Solution 2.5
	µ#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"
	#include <stdio.h>
	void main(void)
	{
	printf("%sn", HEADER);
	puts("This is a testn");
	int i;
	i = 5;
	printf("I = %dn", i);
	}
	§
	µ#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"
	#include <stdio.h>
	void main(void)
	{
	printf("%sn", HEADER);
	puts("This is a testn");
	int i;
	i = 5;
	printf("I = %dn", i);
	}
	§
	µ> bcc cppv2-5.c
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-5.c:
	Error cppv2-5.c 10: Declaration is not allowed here in function main
	*** 1 errors in Compile ***
	Available memory 905112
	> bcc cppv2-5.cpp
	Borland C++ Version 3.00 Copyright (c) 1991 Borland International
	cppv2-5.cpp:
	Turbo Link Version 5.0 Copyright (c) 1991 Borland International
	Available memory 894596
	> cppv2-5
	C++ Problem 2.5 by Rick Conn using Borland C++
	This is a test
	I = 5
	§

	Solution 2.6
	µ#define HEADER "C++ Problem 2.6 by Rick Conn using Borland C++"
	#include <stdio.h>
	struct book {
	char title[40];
	char author[20];
	};
	void print_book (book &name)
	{
	printf(" Title: %sn", name.title);
	printf("Author: %sn", name.author);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	book textbook = { "Turbo C++ DiskTutor",
	"Voss & Chui" };
	book refbook = { "The Annotated C++ Reference Manual",
	"Ellis & Stroustrup" };
	print_book (textbook);
	print_book (refbook);
	}
	§
	µC++ Problem 2.6 by Rick Conn using Borland C++
	Title: Turbo C++ DiskTutor
	Author: Voss & Chui
	Title: The Annotated C++ Reference Manual
	Author: Ellis & Stroustrup
	§

	Solution 2.7
	µ#define HEADER "C++ Problem 2.7 by Rick Conn using Borland C++"
	#include <stdio.h>
	class person {
	char *name;
	public:
	person (char *my_name); // create a person with
	// a given name
	void print_me(void); // print the name of the person
	// and his address using this
	};
	person::person (char *my_name)
	{
	name = my_name;
	}
	void person::print_me(void)
	{
	printf("The name is %sn", name);
	printf("The address is %pn", this);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	person ck ("Clark Kent");
	person s ("Superman");
	person bw ("Bruce Wayne");
	person b ("Batman");
	person bs ("Bjarne Stroustrop");
	ck.print_me();
	s.print_me();
	bw.print_me();
	b.print_me();
	bs.print_me();
	}
	§
	µC++ Problem 2.7 by Rick Conn using Borland C++
	The name is Clark Kent
	The address is FFF4
	The name is Superman
	The address is FFF2
	The name is Bruce Wayne
	The address is FFF0
	The name is Batman
	The address is FFEE
	The name is Bjarne Stroustrop
	The address is FFEC
	§

	Solution 3.1
	µ#define HEADER "C++ Problem 3.1 by Rick Conn using Borland C++"
	#include <stdio.h>
	class counter {
	static int object_count;
	public:
	counter();
	static int get_count(void);
	};
	int counter::object_count = 0; // init count
	counter::counter() { counter::object_count++; }
	int counter::get_count(void)
	{
	return counter::object_count;
	}
	void main(void)
	{
	printf("%sn", HEADER);
	counter c1;
	printf("The count is %dn",
	c1.get_count());
	counter c2;
	printf("The count is %dn",
	counter::get_count());
	counter c3;
	printf("The count is %dn",
	c3.get_count());
	counter c4;
	printf("The count is %dn",
	c4.get_count());
	counter c5;
	printf("The count is %dn",
	c5.get_count());
	}
	§
	µC++ Problem 3.1 by Rick Conn using Borland C++
	The count is 1
	The count is 2
	The count is 3
	The count is 4
	The count is 5
	§

	Solution 3.2
	µ#define HEADER "C++ Problem 3.2 by Rick Conn using Borland C++"
	#include <stdio.h>
	#include <string.h> // for strcpy()
	const max_string_length = 100;
	class string {
	char data[max_string_length];
	static int number_of_strings;
	public:
	string (char *);
	static int count (void);
	void print (void);
	};
	int string::number_of_strings = 0;
	string::string(char *new_string) {
	strcpy(data, new_string);
	string::number_of_strings++;
	}
	int string::count(void) {
	return number_of_strings;
	}
	void string::print(void) {
	printf("String = "%s"n", data);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	string s1("This is a test");
	string s2("This is only a test");
	string s3("This is fun");
	printf("The count is %dn", string::count());
	string s4("Another string");
	string s5("Yet another string");
	printf("The count is %dn", string::count());
	s1.print();
	s2.print();
	s3.print();
	s4.print();
	s5.print();
	}
	§
	µC++ Problem 3.2 by Rick Conn using Borland C++
	The count is 3
	The count is 5
	String = "This is a test"
	String = "This is only a test"
	String = "This is fun"
	String = "Another string"
	String = "Yet another string"
	§

	Solution 3.3
	µ#define HEADER "C++ Problem 3.3 by Rick Conn using Borland C++"
	#include <stdio.h>
	#include <string.h> // for strcpy()
	#include <mem.h> // for memcpy()
	class note {
	char text[40];
	public:
	note (char *cp = "");
	void print (void);
	};
	class note_book {
	note *narray[10];
	int number_of_notes;
	public:
	note_book();
	void add (note *);
	void print(void);
	};
	note::note (char *value) { strcpy(text, value); }
	void note::print(void) { printf("Note: %sn", text); }
	note_book::note_book() { number_of_notes = 0; }
	void note_book::add (note *newnote) {
	narray[number_of_notes] = newnote;
	number_of_notes++;
	}
	void note_book::print(void) {
	int i;
	for (i=0; i<number_of_notes; i++) {
	printf("%2d: ", i);
	narray[i] -> print();
	}
	}
	void main(void)
	{
	printf("%sn", HEADER);
	note_book nb;
	note n1("This is a test"); note n2("This is only a test");
	note n3("How far will I go?"); note n4("Perhaps just so far");
	note n5("This is fun"); note n6("This is boring");
	note n7("This works");
	nb.add (&n1); nb.add (&n2); nb.add (&n3); nb.add (&n4);
	nb.add (&n5); nb.add (&n6); nb.add (&n7);
	nb.print();
	}
	§
	µC++ Problem 3.3 by Rick Conn using Borland C++
	0: Note: This is a test
	1: Note: This is only a test
	2: Note: How far will I go?
	3: Note: Perhaps just so far
	4: Note: This is fun
	5: Note: This is boring
	6: Note: This works
	§

	Solution 4.1
	µ// CPPV4-1.H by Rick Conn Using Borland C++
	#ifndef COMPLEX_H_
	#define COMPLEX_H_
	// COMPLEX Class
	class complex {
	float real_part;
	float imag_part;
	char *name;
	public:
	complex (char *, float rp=0.0, float ip=0.0);
	void set (float rp=0.0, float ip=0.0);
	complex & operator= (complex &);
	complex operator+ (complex &right);
	complex operator- (complex &right);
	complex operator* (complex &right);
	void print(void);
	};
	complex::complex (char *n, float rp, float ip) {
	name = n; real_part = rp; imag_part = ip;
	}
	void complex::set (float rp, float ip) {
	real_part = rp; imag_part = ip;
	}
	complex & complex::operator= (complex &arg) {
	real_part = arg.real_part;
	imag_part = arg.imag_part;
	return *this;
	}
	complex complex::operator+ (complex &right) {
	complex result ("Temp");
	result.real_part = real_part + right.real_part;
	result.imag_part = imag_part + right.imag_part;
	return result;
	}
	complex complex::operator- (complex &right) {
	complex result ("Temp");
	result.real_part = real_part - right.real_part;
	result.imag_part = imag_part - right.imag_part;
	return result;
	}
	complex complex::operator* (complex &right) {
	complex result ("Temp");
	result.real_part = real_part * right.real_part -
	imag_part * right.imag_part;
	result.imag_part = imag_part * right.real_part +
	real_part * right.imag_part;
	return result;
	}
	void complex::print(void) {
	printf(" %s: %10.5f + %10.5fin",
	name, real_part, imag_part);
	}
	#endif // COMPLEX_H_
	§
	µ#define HEADER "C++ Problem 4.1 by Rick Conn using Borland C++"
	#include <stdio.h>
	#include "cppv4-1.h"
	void main(void)
	{
	printf("%sn", HEADER);
	complex a("A"), b("B", 2.0, 3.0), c("C");
	a = b;
	printf("A = Bn");
	a.print(); b.print(); c.print();
	a.set(5.0, -4.0);
	printf("A = 5 - 4in");
	a.print(); b.print(); c.print();
	c = a + b;
	printf("C = A + Bn");
	a.print(); b.print(); c.print();
	c = a - b;
	printf("C = A - Bn");
	a.print(); b.print(); c.print();
	c = a * b;
	printf("C = A * Bn");
	a.print(); b.print(); c.print();
	}
	§
	µC++ Problem 4.1 by Rick Conn using Borland C++
	A = B
	A: 2.00000 + 3.00000i
	B: 2.00000 + 3.00000i
	C: 0.00000 + 0.00000i
	A = 5 - 4i
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 0.00000 + 0.00000i
	C = A + B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 7.00000 + -1.00000i
	C = A - B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 3.00000 + -7.00000i
	C = A * B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 22.00000 + 7.00000i
	§

	Solution 4.2
	µ#define HEADER "C++ Problem 4.2 by Rick Conn using Borland C++"
	#include <stdio.h>
	class number {
	protected:
	int value;
	public:
	number (int new_value = 0);
	void set (int new_value = 0);
	};
	class pnumber : public number {
	public:
	// Note: I had to add a constructor for pnumber
	// because number's constructor required an argument
	pnumber (int new_value = 0);
	void print(void);
	};
	number::number(int new_value) {
	value = new_value;
	}
	void number::set (int new_value) {
	value = new_value;
	}
	pnumber::pnumber(int new_value) {
	value = new_value;
	}
	void pnumber::print (void) {
	printf("The value is %dn", value);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	pnumber a (12), b(20), c(0);
	a.print(); b.print(); c.print();
	a.set(1); b.set(2); c.set(3);
	a.print(); b.print(); c.print();
	}
	§
	µC++ Problem 4.2 by Rick Conn using Borland C++
	The value is 12
	The value is 20
	The value is 0
	The value is 1
	The value is 2
	The value is 3
	§

	Solution 4.3
	µ#define HEADER "C++ Problem 4.3 by Rick Conn using Borland C++"
	#include <stdio.h>
	#include <time.h>
	class time_stamp {
	time_t stamp;
	public:
	time_stamp();
	void showtime(void);
	};
	time_stamp::time_stamp() {
	time (&stamp);
	}
	void time_stamp::showtime(void) {
	printf("Time Stamp: %s", ctime (&stamp));
	}
	class message : private time_stamp {
	char *msg;
	public:
	message (char *);
	void print(void);
	};
	message::message (char *m) {
	msg = m;
	}
	void message::print(void) {
	printf("Message "%s" ", msg);
	showtime();
	}
	class message2 : public time_stamp {
	char *msg;
	public:
	message2 (char *);
	void print(void);
	};
	message2::message2 (char *m) {
	msg = m;
	}
	void message2::print(void) {
	printf("Message2 "%s" ", msg);
	showtime();
	}
	void main(void)
	{
	printf("%sn", HEADER);
	message m1("This is a test");
	message2 m2("Another test");
	// All member functions of message
	m1.print();
	// All member functions of message2
	m2.print();
	m2.showtime();
	}
	§
	µC++ Problem 4.3 by Rick Conn using Borland C++
	Message "This is a test" Time Stamp: Mon Feb 10 05:35:39 1992
	Message2 "Another test" Time Stamp: Mon Feb 10 05:35:39 1992
	Time Stamp: Mon Feb 10 05:35:39 1992
	§

	Solution 4.4
	µ#define HEADER "C++ Problem 4.4 by Rick Conn using Borland C++"
	#include <stdio.h>
	#include <time.h>
	class time_stamp {
	time_t stamp;
	public:
	time_stamp();
	~time_stamp();
	void showtime(void);
	};
	time_stamp::time_stamp() {
	time (&stamp);
	printf(" Time_Stamp constructor calledn");
	}
	time_stamp::~time_stamp() {
	printf(" Time_Stamp destructor calledn");
	}
	void time_stamp::showtime(void) {
	printf("Time Stamp: %s", ctime (&stamp));
	}
	class message : private time_stamp {
	char *msg;
	public:
	message (char *);
	~message();
	void print(void);
	};
	message::message (char *m) {
	msg = m;
	printf(" Message constructor calledn");
	}
	message::~message() {
	printf(" Message destructor calledn");
	}
	void message::print(void) {
	printf("Message "%s" ", msg);
	showtime();
	}
	class message2 : public time_stamp {
	protected:
	char *msg;
	public:
	message2 (char *);
	~message2();
	void print(void);
	};
	message2::message2 (char *m) {
	msg = m;
	printf(" Message2 constructor calledn");
	}
	message2::~message2() {
	printf(" Message2 destructor calledn");
	}
	void message2::print(void) {
	printf("Message2 "%s" ", msg);
	showtime();
	}
	class priority_message : public message2 {
	char *urgency;
	public:
	priority_message (char *m, char *u);
	~priority_message();
	void print(void); // includes urgency info
	};
	priority_message::priority_message (char *m, char *u) :
	message2(m) {
	urgency = u;
	printf(" Priority_Message constructor calledn");
	}
	priority_message::~priority_message() {
	printf(" Priority_Message destructor calledn");
	}
	void priority_message::print(void) {
	printf("Urgency %s: %s -- ", urgency, msg);
	showtime();
	}
	void main(void)
	{
	printf("%sn", HEADER);
	priority_message pm1("This is a test", "Routine");
	priority_message pm2("Em Situation", "Emergency");
	pm1.print();
	pm2.print();
	}
	§
	µC++ Problem 4.4 by Rick Conn using Borland C++
	Time_Stamp constructor called
	Message2 constructor called
	Priority_Message constructor called
	Time_Stamp constructor called
	Message2 constructor called
	Priority_Message constructor called
	Urgency Routine: This is a test -- Time Stamp: Mon Feb 10 05:50:10 1992
	Urgency Emergency: Em Situation -- Time Stamp: Mon Feb 10 05:50:10 1992
	Priority_Message destructor called
	Message2 destructor called
	Time_Stamp destructor called
	Priority_Message destructor called
	Message2 destructor called
	Time_Stamp destructor called
	§

	Solution 4.5
	µ#define HEADER "C++ Problem 4.5 by Rick Conn using Borland C++"
	#include <stdio.h>
	class base {
	protected:
	char *msg;
	public:
	base(char *);
	~base();
	void print(void);
	};
	class derived1 : base {
	public:
	derived1(char *);
	~derived1();
	};
	class derived2 : derived1 {
	public:
	derived2(char *);
	~derived2();
	};
	base::base (char *m) {
	msg = m;
	printf("Base constructor called with message %sn", msg);
	}
	base::~base() {
	printf(" Base destructor called with message %sn", msg);
	}
	void base::print(void) {
	printf(" with message %sn", msg);
	}
	derived1::derived1 (char *m) : base(m) {
	printf(" Derived1 constructor called");
	print();
	}
	derived1::~derived1() {
	printf(" Derived1 destructor called");
	print();
	}
	derived2::derived2 (char *m) : derived1(m) {
	printf(" Derived2 constructor calledn");
	}
	derived2::~derived2() {
	printf("Derived2 destructor calledn");
	}
	void main(void)
	{
	printf("%sn", HEADER);
	derived2 x ("X");
	{
	derived2 y ("Y");
	}
	derived2 z ("Z");
	}
	§
	µC++ Problem 4.5 by Rick Conn using Borland C++
	Base constructor called with message X
	Derived1 constructor called with message X
	Derived2 constructor called
	Base constructor called with message Y
	Derived1 constructor called with message Y
	Derived2 constructor called
	Derived2 destructor called
	Derived1 destructor called with message Y
	Base destructor called with message Y
	Base constructor called with message Z
	Derived1 constructor called with message Z
	Derived2 constructor called
	Derived2 destructor called
	Derived1 destructor called with message Z
	Base destructor called with message Z
	Derived2 destructor called
	Derived1 destructor called with message X
	Base destructor called with message X
	§

	Solution 5.1
	µ#define HEADER "C++ Problem 5.1 by Rick Conn using Borland C++"
	#include <stdio.h>
	class wheel {
	int wheel_diameter;
	public:
	wheel (int diameter);
	void print(void);
	};
	class vehicle {
	int horse_power;
	wheel lfront, rfront, lrear, rrear;
	public:
	vehicle (int hp,
	int diameter_of_each_wheel);
	void print(void);
	};
	wheel::wheel (int diameter) { wheel_diameter = diameter; }
	void wheel::print(void) {
	printf("Wheel diameter = %dn", wheel_diameter);
	}
	vehicle::vehicle (int hp,
	int diameter_of_each_wheel) :
	horse_power(hp),
	lfront(diameter_of_each_wheel),
	rfront(diameter_of_each_wheel),
	lrear(diameter_of_each_wheel),
	rrear(diameter_of_each_wheel)
	{
	// nothing else to be done
	}
	void vehicle::print(void) {
	printf("Horse Power = %dn", horse_power);
	lfront.print();
	rfront.print();
	lrear.print();
	rrear.print();
	}
	void main(void)
	{
	printf("%sn", HEADER);
	vehicle v (190, 32);
	v.print();
	}
	§
	µC++ Problem 5.1 by Rick Conn using Borland C++
	Horse Power = 190
	Wheel diameter = 32
	Wheel diameter = 32
	Wheel diameter = 32
	Wheel diameter = 32
	§

	Solution 5.2
	µ#define HEADER "C++ Problem 5.2 by Rick Conn using Borland C++"
	#include <stdio.h>
	enum pet_kind {doggy, kitty, neither};
	class pet {
	pet_kind pk;
	public:
	pet(pet_kind);
	void speak(void);
	pet_kind type(void);
	};
	class dog : public pet {
	public:
	dog();
	void speak(void);
	};
	class cat : public pet {
	public:
	cat();
	void speak(void);
	};
	pet::pet(pet_kind kind) {
	pk = kind;
	}
	void pet::speak(void) {
	printf("silencen");
	}
	pet_kind pet::type(void) {
	return pk;
	}
	dog::dog() : pet(doggy) {
	// nothing to do
	}
	void dog::speak(void) {
	printf("woofn");
	}
	cat::cat() : pet(kitty) {
	// nothing to do
	}
	void cat::speak(void) {
	printf("meown");
	}
	void talk (pet *p) {
	switch (p->type()) {
	case doggy : ((dog *)p) -> speak();
	break;
	case kitty : ((cat *)p) -> speak();
	break;
	default : p -> speak();
	break;
	}
	}
	void main(void)
	{
	printf("%sn", HEADER);
	dog scotty;
	cat fluffy;
	pet funny (neither);
	
	talk(&scotty);
	talk(&fluffy);
	talk(&funny);
	}
	§
	µC++ Problem 5.2 by Rick Conn using Borland C++
	woof
	meow
	silence
	§

	Solution 5.3
	µ#define HEADER "C++ Problem 5.3 by Rick Conn using Borland C++"
	#include <stdio.h>
	enum pet_kind {doggy, kitty, neither};
	class pet {
	pet_kind pk;
	public:
	pet(pet_kind);
	virtual void speak(void);
	pet_kind type(void);
	};
	class dog : public pet {
	public:
	dog();
	void speak(void);
	};
	class cat : public pet {
	public:
	cat();
	void speak(void);
	};
	pet::pet(pet_kind kind) {
	pk = kind;
	}
	void pet::speak(void) { }
	pet_kind pet::type(void) {
	return pk;
	}
	dog::dog() : pet(doggy) {
	// nothing to do
	}
	void dog::speak(void) {
	printf("woofn");
	}
	cat::cat() : pet(kitty) {
	// nothing to do
	}
	void cat::speak(void) {
	printf("meown");
	}
	void talk (pet *p) {
	p -> speak();
	}
	void main(void)
	{
	printf("%sn", HEADER);
	dog scotty;
	cat fluffy;
	
	talk(&scotty);
	talk(&fluffy);
	}
	§
	µC++ Problem 5.3 by Rick Conn using Borland C++
	woof
	meow
	§

	Solution 5.4
	µ#define HEADER "C++ Problem 5.4 by Rick Conn using Borland C++"
	#include <stdio.h>
	// COMPLEX Class
	class complex {
	float real_part;
	float imag_part;
	char *name;
	public:
	complex (char *, float rp=0.0, float ip=0.0);
	void set (float rp=0.0, float ip=0.0);
	complex & operator= (complex &);
	complex operator+ (complex &right);
	complex operator- (complex &right);
	complex operator* (complex &right);
	void print(void);
	};
	complex::complex (char *n, float rp, float ip) {
	name = n; real_part = rp; imag_part = ip;
	}
	void complex::set (float rp, float ip) {
	real_part = rp; imag_part = ip;
	}
	complex & complex::operator= (complex &arg) {
	real_part = arg.real_part;
	imag_part = arg.imag_part;
	return *this;
	}
	complex complex::operator+ (complex &right) {
	complex result ("Temp");
	result.real_part = real_part + right.real_part;
	result.imag_part = imag_part + right.imag_part;
	return result;
	}
	complex complex::operator- (complex &right) {
	complex result ("Temp");
	result.real_part = real_part - right.real_part;
	result.imag_part = imag_part - right.imag_part;
	return result;
	}
	complex complex::operator* (complex &right) {
	complex result ("Temp");
	result.real_part = real_part * right.real_part -
	imag_part * right.imag_part;
	result.imag_part = imag_part * right.real_part +
	real_part * right.imag_part;
	return result;
	}
	void complex::print(void) {
	printf(" %s: %10.5f + %10.5fin",
	name, real_part, imag_part);
	}
	void main(void)
	{
	printf("%sn", HEADER);
	complex a("A"), b("B", 2.0, 3.0), c("C");
	a = b;
	printf("A = Bn");
	a.print(); b.print(); c.print();
	a.set(5.0, -4.0);
	printf("A = 5 - 4in");
	a.print(); b.print(); c.print();
	c = a + b;
	printf("C = A + Bn");
	a.print(); b.print(); c.print();
	c = a - b;
	printf("C = A - Bn");
	a.print(); b.print(); c.print();
	c = a * b;
	printf("C = A * Bn");
	a.print(); b.print(); c.print();
	}
	§
	µC++ Problem 5.4 by Rick Conn using Borland C++
	A = B
	A: 2.00000 + 3.00000i
	B: 2.00000 + 3.00000i
	C: 0.00000 + 0.00000i
	A = 5 - 4i
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 0.00000 + 0.00000i
	C = A + B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 7.00000 + -1.00000i
	C = A - B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 3.00000 + -7.00000i
	C = A * B
	A: 5.00000 + -4.00000i
	B: 2.00000 + 3.00000i
	C: 22.00000 + 7.00000i
	§

